TIBURONES, RAYAS, QUIMERAS, LAMPREAS Y MIXÍNIDOS DE LA COSTA ATLÁNTICA DE LA PENÍNSULA IBÉRICA Y CANARIAS

Cástor Guisande González

Catedrático de Ecología Universidad de Vigo (España)

Pedro J. Pascual Alayón

Biólogo Marino Centro Oceanográfico de Canarias Instituto Español de Oceanografia (España)

Jorge Baro Domínguez

Director Centro Oceanográfico de Málaga Instituto Español de Oceanografía (España)

Carlos Granado Lorencio

Catedrático de Ecología Universidad de Sevilla (España)

Alberto Acuña Couñago

Técnico Especialista Universidad de Vigo (España)

Ana Manjarrés Hernández

Bióloga, M. Sc. Universidad Nacional (Colombia)

Patricia Pelayo Villamil

Bióloga, M. Sc. Grupo de Ictiología Universidad de Antioquia (Colombia)

ÍNDICE

Prólogo 2	XIII
	XV
	XIX
	_
ASPECTOS GENERALES	1
EVOLUCIÓN DE LOS PECES	1
LAMPREAS	5
Morfología y anatomía	5
Taxonomía	6
Hábitat	6
Alimentación	6
Reproducción	7
MIXÍNIDOS	8
Morfología y anatomía	8
Taxonomía	9
Hábitat	9
Alimentación	9
Reproducción	9
QUIMERAS	10
Morfología y anatomía	10
Taxonomía	11
Hábitat	11
Alimentación	11
Reproducción	11
TIBURONES Y PECES BATOIDEOS	12
Morfología y anatomía	12
Taxonomía	19
Hábitat	29
Alimentación	30
Reproducción	31
Conservación	33

IDENTIFICACIÓN DE FAMILIAS	35
CLASE CEPHALASPIDOMORPHI (LAMPREAS)	35
Orden Petromyzontiformes	35
Petromyzontidae	35
CLASE MYXINI (MIXÍNIDOS)	36
Orden Myxiniformes	36
Myxinidae	36
CLASE HOLOCEPHALI (QUIMERAS)	37
Orden Chimaeriformes	37
Chimaeridae	37
Rhinochimaeridae	37
CLASE ELASMOBRANCHII (TIBURONES)	38
Orden Carcharhiniformes	38
Carcharhinidae	38
Pseudotriakidae	38
Scyliorhinidae	38
Sphyrnidae	39
Triakidae	39
Orden Hexanchiformes	39
Chlamydoselachidae	39
Hexanchidae	40
Orden Lamniformes	40
Alopiidae	40
Cetorhinidae	40
Lamnidae	41
Mitsukurinidae	41
Odontaspididae	41
Pseudocarchariidae	42
Orden Orectolobiformes	42
Ginglymostomatidae	42
Orden Squaliformes	42
Centrophoridae	42
Dalatiidae	43
Etmopteridae	43
Oxynotidae	43
Somniosidae	44
Squalidae	44
Orden Squatiniformes	44
Squatinidae	44
CLASE ELASMOBRANCHII (PECES BATOIDEOS)	45
Orden Pristiformes	45
Pristidae	45

ÍNDICE	

IX

Orden Rajiformes	45
Arhynchobatidae	45
Dasyatidae	46
Gymnuridae	46
Myliobatidae	47
Rajidae	47
Rhinobatidae	48
Orden Torpediniformes	48
Torpedinidae	48
IDENTIFICACIÓN DE GÉNEROS Y ESPECIES	49
CLASE CEPHALASPIDOMORPHI (LAMPREAS)	49
Orden Petromyzontiformes	49
Petromyzontidae	50
Lampetra fluviatilis	50
Petromyzon marinus	51
CLASE MYXINI (MIXÍNIDOS)	52
Orden Myxiniformes	52
Myxinidae	53
Myxine ios	53
CLASE HOLOCEPHALI (QUIMERAS)	54
Orden Chimaeriformes	54
Chimaeridae	56
Chimaera monstrosa	56
Hydrolagus affinis	57
Hydrolagus mirabilis	58
Rhinochimaeridae	59
Harriotta haeckeli	59
Harriotta raleighana	60
Neoharriotta pinnata	61
Rhinochimaera atlantica	62
CLASE ELASMOBRANCHII (TIBURONES)	63
Orden Carcharhiniformes	63
Carcharhinidae.	67
Carcharhinus altimus	67
Carcharhinus brachyurus	68
Carcharhinus falciformis	69
Carcharhinus limbatus	70
Carcharhinus longimanus	71
Carcharhinus plumbeus	72
Galeocerdo cuvier	73
Priorace alauca	74

Pseudotriakidae	75
Pseudotriakis microdon	75
Scyliorhinidae	76
Apristurus laurussonii	76
Galeus melastomus	77
Scyliorhinus canicula	78
Scyliorhinus stellaris	79
Sphyrnidae	80
Sphyrna lewini	80
Sphyrna zygaena	81
Triakidae	82
Galeorhinus galeus	82
Mustelus asterias	83
Mustelus mustelus	84
Orden Hexanchiformes	85
Chlamydoselachidae	86
Chlamydoselachus anguineus	86
Hexanchidae	87
Heptranchias perlo	87
Hexanchus griseus	88
Orden Lamniformes	89
Alopiidae	92
Alopias superciliosus	92
Alopias vulpinus	93
Cetorhinidae	94
Cetorhinus maximus	94
Lamnidae	95
Carcharodon carcharias	95
Isurus oxyrinchus	96
Isurus paucus	97
Lamna nasus	98
Mitsukurinidae	99
Mitsukurina owstoni	99
Odontaspididae	100
Odontaspis ferox	100
Pseudocarchariidae	101
Pseudocarcharias kamoharai	101
Orden Orectolobiformes	102
Ginglymostomatidae	103
Ginglymostoma cirratum	103
Orden Squaliformes	104
Centrophoridae	109

ÍNDICE

XI

Centrophorus granulosus	109
Centrophorus lusitanicus	110
Centrophorus niaukang	111
Centrophorus squamosus	112
Deania calcea	113
Deania hystricosa	114
Deania profundorum	115
Dalatiidae	116
Dalatias licha	116
Squaliolus laticaudus	117
Etmopteridae	118
Centroscyllium fabricii	118
Etmopterus princeps	119
Etmopterus pusillus	120
Etmopterus spinax	121
Oxynotidae	122
Oxynotus centrina	122
Oxynotus paradoxus	123
Somniosidae	124
Centroscymnus coelolepis	124
Centroscymnus owstonii	125
Centroselachus crepidater	126
Scymnodon ringens	127
Somniosus rostratus	128
Zameus squamulosus	129
Squalidae	130
Squalus acanthias	130
Squalus blainvillei	131
Squalus megalops	132
Orden Squatiniformes	133
Squatinidae	134
Squatina oculata	134
Squatina squatina	135
CLASE ELASMOBRANCHII (PECES BATOIDEOS)	136
Orden Pristiformes	136
Pristidae	137
Pristis pectinata	137
Pristis perotteti	138
Orden Rajiformes	139
Arhynchobatidae	145
Bathyraja richardsoni	145
Dasyatidae	146

Dasyatis centroura	146
Dasyatis margarita	147
Dasyatis pastinaca	148
Pteroplatytrygon violacea	149
Taeniura grabata	150
Gymnuridae	151
Gymnura altavela	151
Myliobatidae	152
Myliobatis aquila	152
Mobula mobular	153
Pteromylaeus bovinus	154
Rhinoptera marginata	155
Rajidae	156
Dipturus batis	156
Dipturus oxyrinchus	157
Leucoraja circularis	158
Leucoraja fullonica	159
Leucoraja naevus	160
Neoraja iberica	161
Raja asterias	162
Raja brachyura	163
Raja clavata	164
Raja miraletus	165
Raja montagui	166
Raja undulata	167
Rajella barnardi	168
Rajella ravidula	169
Rostroraja alba	170
Rhinobatidae	171
Rhinobatos rhinobatos	171
Orden Torpediniformes	172
Torpedinidae	173
Torpedo marmorata	173
Torpedo nobiliana	174
Torpedo torpedo	175
Sinónimos	177
Nombres comunes	191
Nombres científicos	201
Bibliografía	205
Glosario de términos	227

Prólogo

En relación con los libros existentes sobre zoología-ecología de vertebrados, el grupo de los peces ocupa un lugar poco relevante, aunque su riqueza de especies (más de 32.000), arroja la estadística de que cada dos vertebrados uno es un pez. Las causas de la poca atención recibida son de distinta índole, desde que viven en el agua y, por lo tanto, son "menos visibles", hasta el predominio de los Planes de Conservación centrados en especies atractivas para el gran público. Históricamente, la aproximación a estos vertebrados se ha realizado con la óptica taxonómica y filogenética.

El inicio de los conocimientos sobre la fauna piscícola que se localiza en nuestras costas se debe a investigadores como de la Paz Graells, Asso del Río, Cisternas, Barceló, Machado Nuñez y Barras de Aragón en el periodo entre los siglos XIX y el XX. En el siglo pasado son de resaltar las aportaciones de Perez Arcas, Odón de Buen, su hijo Fernando de Buen, Gogorza, Lozano Rey, Gandolfi, Velaz de Medrano y Ugarte, entre otros. Muchas de ellas surgen a la luz del Instituto Español de Oceanografía (1914), fundado por Odón de Buen, a partir de la fusión de los laboratorios de Biología Marina de Santander (1886), Porto Pi en Mallorca (1908) y la Estación Oceanográfica de Málaga (1911).

En la actualidad conocemos que las especies ibéricas marinas se localizan en regiones zoogeográficas entre el Mediterráneo occidental y Atlántico oriental, conectadas a través de la frontera de transición del estrecho de Gibraltar. La ictiofauna litoral corresponde a la denominada subregión Atlántico-Mediterránea. En términos de biodiversidad, el Mar Mediterráneo presenta una riqueza alta, con bajas biomasas; así como un tamaño medio por especie inferior al de aguas atlánticas y una esperanza de vida menor (Tsimenides, 1994). Muchas especies del Mediterráneo se comparten con el Atlántico. Este libro se centra en las especies de tiburones, rayas, mantas, peces sierra, lampreas, quimeras y mixínidos de la costa atlántica de la Península Ibérica y Canarias.

En el momento actual, el desarrollo de las pesquerías, tanto a nivel mundial como regional, demanda la elaboración de documentos que permitan un mejor conocimiento de las especies, así como aspectos de su biología y ecología. Aunque pudiera tenerse la impresión de que este tipo de libros tienen una utilidad exclusiva por parte de profesionales pesqueros, es la demanda

generada en la formación de estudiantes universitarios y técnicos ambientales, lo que los hace más necesarios. La aparición de nuevas Universidades de Ciencias Marinas, cursos de doctorado en temas piscícolas, asignaturas en el Grado en Ciencias Biológicas, cursos de postgrado de gestión de aguas y Masters (o Maestrías) en Medio Ambiente, requiere textos capaces de ofrecer información técnica suficiente, moderna y aplicada, a la problemática regional. No es tan sólo por lo útil que puede resultar un texto en castellano para complementar la información dada en cualquier curso (aunque se agradece por parte de los alumnos), sino también por la labor de aproximación a la realidad del país sobre la cual debe actuar en su cercana actividad profesional.

Este libro contiene ciertos elementos relevantes que le confieren una gran utilidad, y a distintos niveles. En primer lugar, está el hecho de que, de una manera resumida y didáctica, se ha pretendido incluir toda la información existente sobre los peces marinos de un área tan importante para nuestro país como las aguas del Atlántico oriental. También resulta indudable que, si bien en el mundo editorial relacionado con el grupo de los peces, tanto de mar como de agua dulce, se han desarrollado excelentes obras de pesca deportiva, con vistosas ilustraciones, o textos especializados de elevado contenido, el cada vez mayor interés por estos recursos naturales, explotados por el hombre desde los tiempos antiguos, incentiva la edición de documentos que permitan ahondar en la clasificación y determinación de las especies ícticas. Además es importante el conocimiento de sus características ecológicas, descripciones de sus hábitats o estrategias tróficas, etc., escritos en un lenguaje accesible tanto para un público especializado que desarrolla su actividad profesional en las distintas aproximaciones de la Biología Pesquera o la Zoología, como de aquellos que se aproximan como estudiantes o simples observadores de la naturaleza, que disfrutan de ella durante su tiempo de ocio.

Por todo ello, siempre es bienvenida la aparición de textos que permitan una visión integral, resumida y concisa, como la que se pretende presentar en esta obra. En modo alguno este libro tiene vocación de ser un texto ambientalista, en donde se contemplen de forma simultánea el ecosistema acuático y los intereses social y económico del recurso (los peces). Su objetivo es ofrecer información sintetizada de las especies marinas en las costas atlánticas de nuestro país, facilitando su reconocimiento y manejo.

Por todo ello, tanto los autores como la Editorial, que han elaborado este documento con el mayor empeño y dedicación, esperan que tenga interés entre los especialistas así como sirva de guía al público interesado en los peces marinos.

¿CÓMO USAR ESTA GUÍA?

La esencia de cualquier guía zoológica es facilitar un acceso fácil y rápido a la identificación de una especie; en nuestro caso, los tiburones, rayas, mantas, peces sierra, quimeras, lampreas y mixínidos de la costa atlántica de la Península Ibérica y Canarias.

Esta Guía comienza con la sección denominada ASPECTOS GENERALES. Al inicio de esta sección se analiza muy someramente el origen y evolución de los peces. Las siguientes páginas de esta sección están dedicadas a describir los elementos anatómicos más significativos de las Clases Cephalaspidomorphi (lampreas), Myxini (mixínidos), Holocephali (quimeras) y Elasmobranchii (tiburones y peces batoideos).

Con el fin de presentar un texto didáctico y de manejo fácil, se ha optado por una organización de los contenidos de forma anidada; desde los niveles taxonómicos más generales de orden y familia, a los de género y especie. La idea es que en primer lugar se identifique la familia. Por ello, la siguiente sección de esta Guía es IDENTIFICACIÓN DE FAMILIAS donde, partiendo de cada clase, se presentan todos los órdenes y las diferentes características de cada una de las familias presentes en la zona de cada uno de ellos.

Una vez identificada la familia es posible determinar el género en la siguiente sección: IDENTIFICACIÓN DE GÉNEROS. En ella se pueden ver todos los géneros presentes en la zona de cada una de las familias.

Para finalizar con el proceso de identificación, una vez determinado el género, es posible ver las fotografías de todas las especies de cada género. Esta es la sección central de la Guía, ya que incluye las fichas de las distintas especies que se encuentran en la zona. La información individualizada se presenta en forma gráfica, con fotografías originales donde se señalan los parámetros diferenciadores de cada especie, además de nombres comunes en diferentes idiomas (español-ES, gallego-GL, catalán-CA, vasco-EU, inglés-EN, francés-FR, alemán-DE, italiano-IT y portugués-PT), área de distribución biogeográfica (mapa), diagnosis, hábitat, tamaño, reproducción, alimentación, importancia (social y pesquera) y si puede ser peligrosa para el hombre.

En algunos casos las descripciones de las fotos de la familia, del género y/o de la especie son iguales. Esto ocurre cuando hay un solo género en la familia y/o una sola especie en el género.

La Guía se complementa con todos los sinónimos de los nombres de las especies, nombres comunes, nombres científicos y un glosario de los términos científicos utilizados a lo largo del libro, que tiene el objetivo de mejorar la compresión de este libro, para aquellos lectores menos familiarizados con el lenguaje científico.

ASPECTOS GENERALES

EVOLUCIÓN DE LOS PECES

Los primeros vertebrados o prototipos de peces surgieron en el periodo Ordovícico, hace 480 millones de años (Figura 1). Aquellos antiquísimos vertebrados tenían forma de pez y habitaron las aguas dulces o ligeramente saladas de una tierra que comenzaba a ser conquistada. Tenían una boca pequeña, redonda e inmóvil, lo cual sugiere que se alimentaban por filtración. Por su característica boca estos proto-peces se les clasifica como la Superclase Agnatos "sin mandíbula" y, por las placas óseas con las que cubrían sus cuerpos, se les incluye en la clase Ostracodermos (piel parecida a una concha).

Cuando aparecen estos primitivos peces, de los continentes emergidos el más importante era el gran continente de *Gondwana*, con una extensión mucho mayor que la de todos los demás. *Gondwana* se extendía desde el Ecuador hasta el Polo Sur. Entre los otros continentes, mucho más pequeños, estaba *Laurentia*, que se correspondía esencialmente con la actual Canadá y se situaba entonces en la franja tropical, al igual que el otro pequeño continente llamado *Siberia*. Con unos mares más extensos que los actuales, el clima general debió ser más oceánico y templado, con menos oscilaciones estacionales. Existían amplios mares que se adentraban en el interior de los continentes y que favorecieron un rápido desarrollo de la diversidad animal, pues sus aguas someras, ricas en nutrientes, creaban unas condiciones biotópicas ideales para la proliferación de la vida. Las tierras emergidas estaban pobladas únicamente por cianobacterias y algas, no por plantas todavía.

A final del Ordovícico y principios del Silúrico, hace unos 390 millones de años tuvo lugar una glaciación en las latitudes australes de *Gondwana*, y la diversidad animal oceánica (equinodermos, trilobites, nautiloideos, etc.) se vio muy afectada. Se produjo entonces la primera gran extinción biológica del Fanerozoico. Aquellos antepasados de los peces soportaron esta primera gran glaciación de finales del Ordovícico y se hacen dominantes durante todo el Silúrico y Devónico. Eran de pequeño tamaño, de alrededor de 15-20 cm, con el cuerpo cubierto de placas hexagonales, endoesqueleto cartilaginoso y provistos de una aleta caudal heterocerca. El hábitat donde se localizaban estaba asociado a los ambientes cercanos al fondo, alimentándose de

materia orgánica y pequeños invertebrados del fondo (bentos) filtrándolos a través de unas agallas bien desarrolladas que tenían la doble función alimenticia y respiratoria. De este grupo precursor evolucionaron los actuales Agnatos o Ciclóstomos: que son la clase Cephalaspidomorphi (Lampreas) y la clase Myxini (Mixínidos).

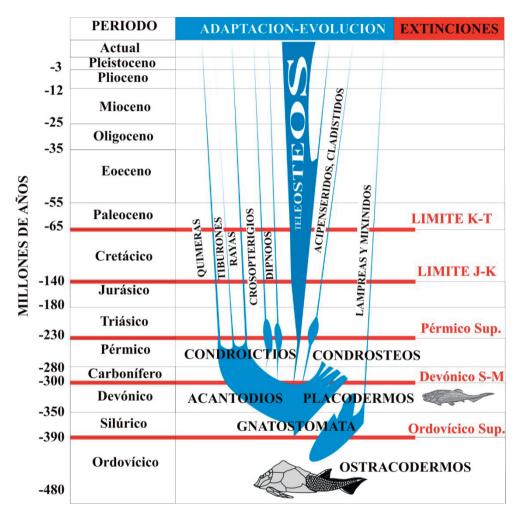


Figura 1. Esquema de la evolución de los peces.

A finales del Silúrico y principios del Devónico hace 350 Millones de años, se produce la primera "gran revolución" evolutiva gracias a la transformación del tercer arco branquial que ahora pasaría a sostener una boca móvil; aparecen los primeros peces con mandíbulas (Gnatostomata). Estos nuevos peces podían dar caza a sus presas más eficientemente, posibilitando así el salto considerable hacia la diversificación trófica y posterior evolución de todos los vertebrados.

Aquellos primitivos peces del periodo Devónico, que tenían aletas pares y cuerpos blindados con fuertes corazas, se les conocen bajo los nombres de Acantodios y Placodermos. Los primeros, también llamados tiburones espinosos, tenían sus cuerpos cubiertos de escamas óseas en forma adiamantada y un esqueleto interno osificado semejante a los Osteictios actuales, y vivieron tanto en aguas dulces como saladas desde el periodo Devónico al Pérmico. En cambio en los Placodermos, también llamados peces acorazados, estaban cubiertos con fuertes placas óseas como escudos articulados, tanto en la cabeza como en la parte frontal del cuerpo, y estaban dotados de grandes mandíbulas. En este grupo de peces se observan estructuras anatómicas semejantes a los pterigópodos de los condrictios y tenían una reproducción con fecundación interna.

Los placodermos se diversificaron en varias ramas evolutivas, algunos alcanzaron hasta los 10 metros de longitud y fueron grandes depredadores que dominaron todos los mares hasta extinguirse al inicio del Carbonífero hace 300 millones de años. Al parecer en el periodo Devónico se produjo una gran divergencia en la evolución de los antiguos peces. Por un lado, desprendiéndose de su armadura externa y afianzando la posesión de un esqueleto interno, compuesto únicamente de cartílago, surgen los Condrictios (Chondrichthyes) que conservan el esqueleto cartilaginoso y no desarrollan escamas óseas externas (*Chondros*: cartílago, e *ichthus*: pez), grupo en el que se incluyen las quimeras, tiburones, rayas, mantas y peces sierra.

Figura 2. Dientes fósiles de *Megaselachus megalodon* obtenidos mediante draga de investigación en aguas del sur de Fuerteventura (Campaña INFUECO 0710).

Aunque el esqueleto cartilaginoso constituyó un gran paso y una ventaja acuática, se desintegra rápidamente, por lo que en raras ocasiones se encuentran fósiles bien conservados de este grupo de peces. Los dientes constituyen los elementos más comunes y utilizados para el estudio y análisis de la evolución moderna de los tiburones. La Figura 2 muestra los dientes de *Megaselachus megalodon*, un tiburón gigante cosmopolita abundante durante el Mioceno, hace 25 millones de años, que vivió en el Paleomediterráneo y en el Atlántico.

Se cree que los grupos actuales de tiburones y rayas datan de los periodos Jurásico y Cretácico (hace 245-65 millones de años). Podemos decir que en general no han cambiado mucho en los últimos 150 millones de años. Por ejemplo, los clamidoseláquidos están representados por *Chlamydoselachus anguineus* (Figura 3), que tiene un cuerpo alargado, cabeza con forma de serpiente, una boca terminal con grandes dientes tricuspidados y seis pares de agallas. El que se le considere un "fósil viviente" no es una exageración ya que se han encontrado dientes similares en estratos geológicos del Plioceno y el Eoceno (50 millones de años).

Figura 3. Fotografías de la boca y cuerpo del tiburón *Chlamydoselachus anguineus*.

Por otro lado, otra línea evolutiva no exitosa en un principio pero que luego dio origen a un gran número de especies, sustituyó el cartílago por hueso y se cubrió de escamas, los Osteictios (Osteichthyes) que comprenden los modernos peces óseos (*Osteon*: hueso, *ichthus*: pez). También en este periodo surgen otros pequeños grupos de peces que todavía están presentes en nuestros mares y lagunas costeras, como los Crossopterigios (peces con aletas lobuladas pares) de los que se cree que son los ancestros de los anfibios (tetrápodos), los Dipnoos (peces pulmonados), pequeños peces capaces de respirar dentro y fuera del agua, que según otros autores son en realidad los antepasados de los anfibios; los Acipenseridos cuyos únicos represen-

tantes en la actualidad son los esturiones y sus parientes; los Cladistidos (peces dulceacuícolas) caracterizados por una dorsal larga con 5 a 18 espinas separadas y pectorales con radios osificados formando una placa, sólo presentes en aguas dulces africanas, y otros pequeños grupos que no tuvieron éxito evolutivo y, por ello, se extinguieron.

A continuación se describe de forma resumida algunos aspectos generales de la biología de las lampreas, mixínidos, quimeras, tiburones y peces batoideos (rayas, mantas y peces sierra).

LAMPREAS

MORFOLOGÍA Y ANATOMÍA

De forma anguiliforme, se caracterizan por la ausencia de mandíbulas, con una boca circular provista de dientes córneos u odontoides y forma de embudo (Figura 4). Con marsipobranquias (branquias en bolsas). Cuerpo sin escamas (desnudo) y abundante mucus. Esqueleto axial principal (vértebras) cartilaginoso o fibroso, sin arcos verdaderos para el soporte de las branquias y su protección, unido al cráneo (neurocráneo), ausencia de aletas pares y un solo orificio nasal (monorrino).

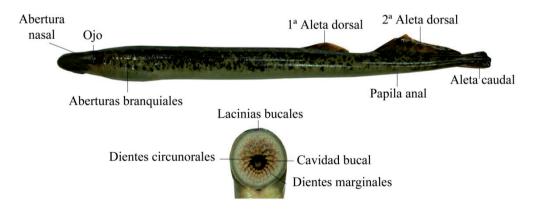


Figura 4. Estructura del cuerpo y de la boca de una lamprea.

No presentan un estómago definido y ni curvaturas en el intestino. En las especies parásitas la boca suctora amandibulada se usa como ventosa para la fijación al huésped, en las que forman nido también para el transporte de arena y durante el apareamiento (sujeción del otro sexo). Reducción total del tubo digestivo durante el periodo de maduración sexual, quedando reducido a un hilo. Carecen de vejiga gaseosa (natatoria). Pueden aspirar el agua, para la respiración, tanto por la boca como por los orificios branquiales.