TOXICOLOGÍA FUNDAMENTAL
Mateo J. B. Orfila (Mahón, 1787-1853), creador de la Toxicología Científica

Portada sobre su tratado sobre toxicología. (1ª edición. París, 1814)
Contenido

Prólogo a la cuarta edición ... XIX

Prefacio. Desastres tóxicos ... XXI

Capítulo 1. Desarrollo y evolución histórica de la Toxicología

Periodo primitivo. Edad Antigua .. 1
 El veneno en la caza, la mitología y el delito 1
Edad Media (Siglos V-XV) ... 3
Edad Moderna (Siglos XV-XVIII) ... 5
 Primeros estudios toxicológicos ... 5
 Nacimiento de la toxicología judicial o forense 8
Edad Contemporánea (Siglos XIX-XXI) ... 9
 Progresos en los conocimientos toxicológicos 12
Toxicología clínica. Centros antitóxicos ... 12
Toxicología industrial y ambiental ... 13
Toxicología bromatológica y farmacéutica .. 14
Toxicología reguladora (Legislación toxicológica) 15
Toxicología mecanicista ... 16
 Toxicología de sistemas ... 17
Enseñanza de la toxicología ... 18
 Acreditación y Registro de toxicólogos 19
Bibliografía ... 19

Capítulo 2. Conceptos y definiciones: Toxicología. Toxicidad

La intoxicación y sus clases ... 22
Glosario de conceptos toxicológicos ... 23
Interés toxicológico del factor tiempo .. 32
Concepto y clasificaciones por toxicidad 33
 Efectos colaterales, secundarios e indeseables de los medicamentos 35
CONTENIDO

Relaciones dosis-efecto y dosis-respuesta .. 36
Hormetinas .. 39
Concepto de pT ... 39
Toxicidad de las sustancias químicas .. 41
Toxicidad de las sustancias naturales .. 43
Agentes físicos ... 43
Etiología de las intoxicaciones .. 47
Armas químicas, físicas y biológicas .. 50
 Grupo 1. Agentes tóxicos .. 50
 Grupo 2. Agentes neutralizantes o incapacitantes .. 50
 Grupo 3. Armas indirectas, de disuasión y confusión .. 51
 Grupo 4. Armas biológicas .. 52
Convenios de prohibición .. 52
Referencias toxicológicas en la legislación española .. 52
Veneno .. 52
Alcohol .. 53
Drogas o gentes de drogadicción ... 53
Medicamentos ... 54
Alimentos .. 54
Medio ambiente .. 54
Medio ambiente laboral .. 55
Doping o dopaje ... 56
Bibliografía .. 57

Capítulo 3. Tránsito de los xenobióticos en el organismo. Toxicocinética

Clasificaciones generales de los tóxicos .. 59
Clasificación de los tóxicos por el lugar de acción .. 59
Procesos de tránsito .. 60
 Mecanismos de absorción .. 60
 Distribución ... 69
 Localización, acumulación o fijación ... 72
 Eliminación ... 73
 Redistribución post mortem ... 77
Toxicocinética .. 79
 Modelos compartimentales ... 79
 Aplicaciones de la toxicocinética ... 82
 Diferencias entre farmacocinética y toxicocinética .. 82
Cinética de la absorción .. 83
 Sistema cerrado de dos compartimentos .. 85
 Sistema abierto de dos compartimentos ... 86
Cinética de la distribución o transporte .. 86
 Cinética general en modelo monocompartmental ... 86
 Cinética en modelo bicompartimental ... 89
Biodisponibilidad ... 94
 Volumen aparente de distribución .. 94
Cinética de la eliminación ... 96
Vida media de eliminación ... 97
Curvas de excreción urinaria ... 98
Principio de la meseta ... 98
Aclaramiento (clearance) ... 100
Formas prácticas para calcular Ke, Ka y t½ 101
Retención selectiva .. 102
Casos particulares de cinéticas .. 105
Absorción percutánea ... 105
Absorción de gases o vapores .. 105
Factores que afectan a la toxicocinética .. 110
Cinética lineal y no lineal ... 110
Cinética del efecto.. 111
 Modelo I: monocrompartimental abierto 111
 Modelo II.a: bicompartimental abierto 111
 Modelo II.b: bicompartimental abierto 112
 Modelo III.a: tricompartimental abierto 112
 Modelo III.b: tricompartimental abierto 112
Ejercicios prácticos de toxicocinética .. 112
Bibliografía .. 113

Capítulo 4 Biotransformaciones de los tóxicos

Biotransformaciones en la Fase I ó de Primer Paso ... 118
 Reacciones de oxidación ... 119
 Reacciones de reducción ... 126
 Hidrólisis ... 129
 Desalquilación ... 129
 Hidratación .. 129
 Isomerización ... 131
 Resumen de las biotransformaciones Fase I ... 131
 Interés toxicológico de los epóxidos ... 131
Biotransformaciones en la Fase II o de Segundo Paso ... 132
Biotransformaciones postmorte .. 138
Bibliografía .. 141

Capítulo 5. Fenómenos de inhibición, activación e inducción enzimática

Principales respuestas funcionales ... 143
 Inactivación de proteínas ... 144
 Inhibición enzimática ... 144
 Formas de activación enzimática .. 145
 Inducción enzimática .. 147
Bibliografía .. 158
Capítulo 6. Mecanismos de toxicidad

A. Afectación de la estructura celular ... 163
 Muerte celular ... 163
B. Alteraciones de la función celular ... 167
 Clases de mecanismos .. 169
 Causticación ... 172
 Establecimiento de uniones químicas persistentes: alquilación y arilación ... 173
 Reactivos electrófilos y nucleófilos ... 174
 Alteración de la homeostasis del calcio ... 191
 Defensa celular contra el estrés ... 194
Mecanismos inmunitarios .. 194
 Toxicidad selectiva ... 204
 Los receptores .. 204
 Transmisión de señales celulares. Clases de receptores 205
 Receptores de interés toxicológico ... 208
 Relaciones estructura – actividad ... 211
 Relaciones cuantitativas (QSAR) ... 215
 Parámetros electrónicos .. 215
 Parámetros de sustituciones estéricas ... 216
 Parámetros de la mínima diferencia estérica (MSD) 216
 Coeficiente de partición .. 216
 Valores cromatográficos .. 216
 Relaciones biológicas .. 216
 Bibliografía ... 217

Capítulo 7. Mecanismos de toxicidad

 Fisiopatología general de causa tóxica ... 222
 Ciclo celular ... 223
 Fisiopatología tóxica de los vasos sanguíneos ... 224
 Alteraciones de la respiración celular. Gases de especial interés toxicológico ... 225
 Anoxia .. 225
 Asfixia (hipoxia) ... 226
 Fisiopatología tóxica del sistema nervioso .. 233
 Elementos anatomofisiológicos ... 233
 Barrera hematoencefálica .. 243
 Neurotoxicología ... 244
 Neuronopatías ... 245
 Axonopatías .. 246
 Mielinopatías ... 247
 Afectación transmisional del impulso nervioso ... 248
 Miopatías ... 251
 Vasculopatías tóxicas ... 251
 Neuropatías tóxicas de especial interés ... 251
XIV CONTENIDO

Ototoxicología... .. 321
Patologías tóxicas de los ojos... 323
Síndromes patológicos complejos ... 327
 Síndrome de intolerancia idiopática ambiental ... 327
 Síndrome del edificio enfermo o patógeno ... 328
Enfermedad de la Guerra del Golfo Pérsico... 328
Genotoxicología ... 329
Bibliografía... 337

Capítulo 8. Factores que modifican la toxicidad

Factores que dependen del medio ambiente. Condiciones físicas ... 342
 Condiciones climáticas y meteorológicas .. 342
 Actividad lumínica ... 342
 Temperatura .. 342
 Presión atmosférica ... 343
 Ruido ... 343
 Ciclos biológicos ... 343
Factores que dependen del individuo. Condiciones biológicas ... 344
 Especie .. 344
 Raza ... 344
 Sexo ... 345
 Edad ... 345
 Individuo .. 348
 Salud /Enfermedad .. 352
 Situación psicosocial ... 352
Factores derivados de las condiciones de absorción ... 353
Cronotoxicología y Cosmotoxicología ... 354
 Ciclos o ritmos del Universo .. 354
Cronosusceptibilidad ... 362
Bibliografía... 364

Capítulo 9. Interacciones entre fármacos

Interacción fisicoquímica ... 369
Interacción farmacocinética ... 369
 Influencias sobre la absorción .. 369
 Interferencias en la distribución .. 371
 Interacciones en la biotransformación .. 372
 Interacciones en la excreción .. 374
Interacción farmacodinámica ... 375
 Interferencias sobre los receptores ... 376
 Interacciones funcionales ... 376
 Interacciones de medicamentos con alimentos .. 376
 Caso particular del alcohol etílico .. 382
Contenido XV

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinergismo, adición y potenciación</td>
<td>383</td>
</tr>
<tr>
<td>Yatrogenia</td>
<td>384</td>
</tr>
<tr>
<td>Decálogo para el médico que receta</td>
<td>384</td>
</tr>
<tr>
<td>Bibliografía</td>
<td>386</td>
</tr>
<tr>
<td>Capítulo 10. Antagonistas y antídotos</td>
<td></td>
</tr>
<tr>
<td>Principios generales para el empleo de antídotos y antagonistas</td>
<td>388</td>
</tr>
<tr>
<td>Principales antagonistas</td>
<td>389</td>
</tr>
<tr>
<td>Principales antídotos</td>
<td>393</td>
</tr>
<tr>
<td>Botiquines de antídotos. Recomendaciones</td>
<td>400</td>
</tr>
<tr>
<td>Botiquines domésticos</td>
<td>401</td>
</tr>
<tr>
<td>Botiquines de Centros de Asistencia Primaria</td>
<td>401</td>
</tr>
<tr>
<td>Botiquines de Centros penitenciarios</td>
<td>401</td>
</tr>
<tr>
<td>Botiquines de empresas</td>
<td>401</td>
</tr>
<tr>
<td>Botiquines de Servicios de urgencias extrahospitalarios</td>
<td>401</td>
</tr>
<tr>
<td>Botiquines de Hospitales, niveles I y II</td>
<td>401</td>
</tr>
<tr>
<td>Botiquín de Hospital de Referencia Toxicológica</td>
<td>401</td>
</tr>
<tr>
<td>Botiquín de Hospital de Referencia Nuclear</td>
<td>401</td>
</tr>
<tr>
<td>Bibliografía</td>
<td>402</td>
</tr>
<tr>
<td>Capítulo 11. Evaluación de la toxicidad y del riesgo. Toxicología experimental</td>
<td></td>
</tr>
<tr>
<td>Fuentes del conocimiento toxicológico</td>
<td>403</td>
</tr>
<tr>
<td>Experimentación toxicológica: objetivos, fundamentos y tipos</td>
<td>404</td>
</tr>
<tr>
<td>Objetivos básicos de la experimentación toxicológica</td>
<td>404</td>
</tr>
<tr>
<td>Principios de la experimentación toxicológica</td>
<td>404</td>
</tr>
<tr>
<td>Tipos de investigaciones toxicológicas experimentales</td>
<td>407</td>
</tr>
<tr>
<td>Diseño y componentes de los modelos toxicológicos experimentales</td>
<td>408</td>
</tr>
<tr>
<td>El sustrato biológico /especie animal</td>
<td>409</td>
</tr>
<tr>
<td>Número y distribución de las unidades experimentales</td>
<td>411</td>
</tr>
<tr>
<td>Selección de las dosis y grupos</td>
<td>413</td>
</tr>
<tr>
<td>Elección de la vía de exposición</td>
<td>413</td>
</tr>
<tr>
<td>Período de exposición</td>
<td>414</td>
</tr>
<tr>
<td>Biomarcadores de toxicidad /toma de muestras</td>
<td>414</td>
</tr>
<tr>
<td>Análisis de resultados</td>
<td>416</td>
</tr>
<tr>
<td>Modelo predictivo</td>
<td>418</td>
</tr>
<tr>
<td>Condiciones generales</td>
<td>418</td>
</tr>
<tr>
<td>Principales ensayos toxicológicos regulados</td>
<td>419</td>
</tr>
<tr>
<td>Toxicidad aguda</td>
<td>419</td>
</tr>
<tr>
<td>Capacidad corrosiva</td>
<td>423</td>
</tr>
<tr>
<td>Capacidad irritante dérmica y ocular</td>
<td>424</td>
</tr>
<tr>
<td>Capacidad sensibilizante</td>
<td>425</td>
</tr>
<tr>
<td>Toxicidad por exposición repetida o prolongada</td>
<td>425</td>
</tr>
<tr>
<td>Carcinogenicidad</td>
<td>426</td>
</tr>
<tr>
<td>Mutagenicidad</td>
<td>427</td>
</tr>
</tbody>
</table>
XVI CONTENIDO

Toxicidad para la reproducción y el desarrollo ... 429
Toxicidad para el medio ambiente .. 432
Cinética en el organismo y el medio ambiente ... 433
Otros tipos de estudios .. 435
Propiedades fisicoquímicas ... 436
Métodos alternativos. Toxicidad in vitro ... 437
Justificación de los ensayos in vitro ... 441
Ventajas e inconvenientes de los ensayos in vitro.. 441
Métodos de toxicología molecular .. 443
Las reglamentaciones sobre la experimentación toxicológica ... 444
Requerimientos reguladores ... 444
Protocolos de ensayo .. 444
Buenas Prácticas de Laboratorio ... 446
Protección de los animales de experimentación. Legislación ... 449
Legislación de protección de los trabajadores ... 450
Análisis del Riesgo Tóxico ... 450
Identificación de los peligros potenciales ... 452
Evaluación dosis - respuesta (toxicidad / seguridad) ... 454
Evaluación de la exposición ... 454
Caracterización del riesgo ... 456
La gestión o manejo del riesgo .. 460
Comunicación del riesgo .. 460
Control o seguimiento del riesgo ... 461
El sistema REACH .. 461
Bibliografía ... 464

Capítulo 12. Toxicología clínica

Centros antitóxicos ... 468
Servicio de información y asesoramiento toxicológico (SIT o CIT) 468
Servicio de análisis toxicológico ... 470
Servicio de tratamiento de intoxicados ... 471
Coordinación intercentros ... 471
Farmacovigilancia y toxicovigilancia .. 472
Epidemiología de las intoxicaciones .. 473
Bibliografía ... 477

Capítulo 13. Diagnóstico de la intoxicación

Signos anatomopatológicos de la muerte por intoxicación .. 480
Disposición del cadáver ... 480
Coloración de la piel ... 480
Corazón y aparato circulatorio .. 482
Pulmón .. 482
Cerebro .. 482
Hígado .. 482
Capítulo 14. El análisis químico-toxicológico

Niveles de complejidad de los Laboratorios de Toxicología	494
Fases de actividad en un laboratorio de Toxicología	496
La muestra para el análisis toxicológico (judicial, clínico, ambiental)	497
Cadena de custodia	497
Consideraciones generales sobre las muestras biológicas	498
Introducción al análisis químico-toxicológico	502
Modalidades del análisis químico-toxicológico	503
Fases de un análisis químico-toxicológico general	503
Dotación básica de un laboratorio de Toxicología analítica	503
Orientación de los análisis toxicológicos	504
Información general	504
Información clínica	505
Variables que influyen en los resultados analíticos	505
Momento de toma de la muestra	505
Estabilidad del compuesto en la muestra	506
Amplitud y reproducibilidad del método analítico	507
Interferencias en el método	508
Normativas de Garantía de calidad en los análisis toxicológicos	509
Interpretación de los resultados analíticos	510
El riesgo de la excesiva sensibilidad instrumental	512
El informe toxicológico	518
Bibliografía	519

Capítulo 15. Sistemáticas analíticas toxicológicas

Clasificación de los tóxicos conforme a los métodos de análisis	521
Sistemáticas analíticas toxicológicas	521
Sistemáticas para gases y vapores	523
Gases tóxicos en la atmósfera	524
Sistemáticas para tóxicos inorgánicos	525
Preconcentración	526
Especiación	526
Técnicas electroanalíticas	527
Determinación directa por espectrofotometría EAA	528
Capítulo 16. Bases generales para la asistencia y tratamiento de intoxicados

Primeros auxilios al intoxicado ... 545
 Vía inhalatoria .. 546
 Vía cutánea .. 547
 Vía digestiva ... 549
 Vía rectal .. 551
 Tratamiento médico cualificado .. 551
 Mantenimiento de las funciones respiratoria y circulatoria 552
 Diagnóstico clínico y analítico ... 553
 Intensificación clínica de las medidas de urgencia 553
 Tratamiento específico y antidótico ... 556
 Tratamiento sintomático ... 557
 Vigilancia y control .. 557
 Complicaciones de las intoxicaciones agudas ... 558
 Síndrome serotoninérgico y Síndrome maligno por neuroléticos 559
 Diagnóstico y tratamiento de las lesiones por radiaciones 560
 Prioridades en el tratamiento de las víctimas de desastres químicos 562
 Bibliografía ... 563

Índice analítico ... 565
Prólogo a la cuarta edición

El tiempo transcurrido desde la 3ª. edición, con la consecuente evolución de los conocimientos toxicológicos, y el haberse agotado los ejemplares correspondientes a la misma, nos han decidido a afrontar una nueva edición que, introduzca los más importantes avances en las distintas facetas de esta ciencia. También hemos querido mantener la estructura de la obra, con capítulos dedicados a los principales cimientos de la Toxicología, partiendo desde bases químicas, biológicas, bioquímicas, anatómicas y fisiológicas, que permitan a los estudiantes, cualquiera que sea su formación previa, introducirse directamente en cada uno de los temas; se ha dado especial atención a los nuevos conocimientos en mecanismos de toxicidad, para nosotros fundamentales para explicar los procesos fisiopatológicos y los abordajes terapéuticos así como para interpretar los resultados analíticos y la valoración del riesgo. Nunca nos cansaremos de insistir en que la Toxicología mecanicista es hoy más importante que la descriptiva clásica con el estudio de tóxico a tóxico, relegado a diccionarios o enciclopedias.

Para esta actualización he contado con la colaboración de mi hijo Guillermo, quien ya me había ayudado en ediciones anteriores, toxicólogo bien curtido en la investigación, en la documentación y en la docencia universitaria, todo lo cual me llena de satisfacción y orgullo.

Nuevamente hemos querido buscar el equilibrio entre recoger los nuevos conocimientos frente a nuestra preocupación por seguir manteniendo la obra dentro de unas dimensiones que atraigan al estudioso, aunque, obviamente, el volumen sea mayor en cada nueva edición. En esta disyuntiva hemos tenido muy presente la calurosa acogida y las opiniones de los profesores y alumnos de los países de habla española que utilizan el libro.

Nuestro sincero reconocimiento a todos ellos, así como a la Editorial Díaz de Santos por las continuas atenciones que dedica a nuestras obras y el interés con que las publica.

Manuel REPETTO
DESARROLLO Y EVOLUCIÓN HISTÓRICA DE LA TOXICOLOGÍA

PERIODO PRIMITIVO. EDAD ANTIGUA

El veneno en la caza, la mitología y el delito

Puede decirse que cada época histórica ha tenido su tóxico, y que los venenos han desempeñado un importante papel en la historia, sea con fines positivos (caza, exterminio de plagas o animales dañinos, medicamentos, etc.) o con fines criminales, lo cual ha hecho que su estudio, es decir, la toxicología, se haya desarrollado gradual y paralelamente a estas prácticas.

Es de suponer que el hombre prehistórico ya tuvo conocimiento de propiedades tóxicas de algunas sustancias minerales, animales o vegetales. La experiencia ha enseñado al hombre qué sustancias resultan perjudiciales y cuáles no lo son tanto, y algunas de ellas fueron empleadas por el hombre primitivo para la caza y, posteriormente, con fines euforizantes, terapéuticos o criminales.

Muy probablemente fueron los productos de origen vegetal los tóxicos primeramente manejados. Así, en algunos palafitos de la Edad del Bronce se han encontrado frutos del *papaver*.

Investigaciones arqueológicas de G. Saint-Hilaire y Parrot han proporcionado conocimiento sobre el empleo de tóxicos por los hombres del Paleolítico, que impregnaban las puntas de lanzas o flechas con diferentes sustancias. Aun hasta nuestros días, los bosquimanos de África han seguido utilizando para ello mezclas de *Amaryllis distichia*, varias especies de *Euphorbia* y *Acocanthera*; algunos pueblos utilizaron también venenos de serpientes y de araña negra. Otros tribus africanas han empleado desde tiempo inmemorial semillas de *Strophantus hispidus* o *Strophantus kombe*. Aristóteles (384-322 a.C.) apunta el uso del veneno de víboras, y Estrabón (63-20 a.C.) el de peces. Dioscórides (siglo I) cita el uso del tejo y el eléboro (tetanizante e hipotenso), también usado por los castellanos con el nombre de «yerba de las ballestas», y como expone Scarlato (2007) se observa claramente una diferenciación regional en el uso de estos venenos; en Japón el acónito, en Oceanía los tetanizantes y sofocantes, y en América una gran diversidad, como tuvieron ocasión de comprobar los descubridores. En la zona del Amazonas se usa preferentemente el curare y el estofanto en las «flechas herboladas», en Colombia, Panamá, Nicaragua, Costa Rica, sur de Venezuela, Guayana, etc., se emponzaban flechas con ácaros (que contienen numerosos alcaloides) y venenos de reptiles, como la rana dorada, sapo minero, etc. (*Dendrobates auratus* o *tinctorius*, *Phyllobactes terribilis* o *bicolor*) en que los indios clavaban flechas y ponían cerca del fuego, para que con el calor segregara el veneno. Y en América del Norte, los pieles rojas y mexicas aplicaban los venenos de serpientes y alcáranes.
Se sabe que el emperador del Japón Shen-Nung (3.500 a.C.) poseía un jardín botánico con plantas medicinales y tóxicas; posteriormente los japoneses extraían un cardiotóxico del crisantemo. En Egipto de los faraones se utilizaban diversos tóxicos cuyo conocimiento estaba reservado a los sacerdotes, como ocurría en muchas tribus primitivas.

El veneno más clásico de todos los tiempos ha sido el arsénico, en forma de diferentes compuestos, y ya figura en lo que se tiene por el texto de medicina más antiguo, escrito hace más de cuatro mil años en tablillas de barro encontradas en Mesopotamia por el norteamericano Samuel S. Kramer en 1956. En el Papiro de Ebers datado hacia el año 1500 antes de Cristo, (descubierto por el egiptólogo alemán Georg Ebers) se encuentra la documentación escrita más antigua acerca de medicamentos y de venenos, con referencias a plomo, antimonio, cobre, cáñamo indicu, *papaver*, conina, acónito, hioscina, helebro, opio, etc. De la misma época es el papiro egipcio de Hearst, con referencias al veneno de las serpientes y de otros animales.

En el *Papiro de Saggarah* se hace referencia a las propiedades tóxicas de la almendra amarga, que, según el *Papiro del Louvre*, resulta ser el ejemplo más antiguo del uso de un veneno como medio de ejecución.

En los libros Veda (1500 a.C.), especialmente en el *Ayurveda* o libro de la Ciencia de la Vida, se encuentran citados algunos venenos y se dan recomendaciones para la terapéutica de envenenamientos con antídotos a base de miel, manteca, asafétida, etc. En la parte del Ayurveda denominada Surusta, se citan venenos vegetales como el oleandro y minerales como el arsénico y el mercurio, y se habla ya de acciones abortivas.

Salomón (972-929 a.C.) en sus *Proverbios* describe perfectamente la embriaguez alcohólica. Tanto la mitología oriental, como la griega o la romana hacen frecuente empleo de tóxicos, aunque, como dice Mata: «Los dioses no envenenan ni hacen envenenar, por ser este recurso infame e indigno de la majestad de un dios». Se refiere a los dioses de la Tierra, porque los del Mar sí intervenían en suicidios y envenenamientos mitológicos. De todas maneras, las alusiones al tema son frecuentes.

 También encontramos que Anfitrite, celosa de Neptuno, envenenó las aguas donde se bañaba la ninfa Escila. La laguna Estigia exhalaba gases deletéreos y era considerada como infernal. Pero también en la tierra mitológica, la esposa de Orfeo, Eurídice, muere a causa de la mordedura de una serpiente, y la historia de Hércules repite una serie de envenenamientos, e incluso su misma muerte fue por intoxicación al ponerse la túnica mojada en la sangre del centauro Neso.

La historia mitológica de Medea es la de una envenenadora de oficio, como lo sería, históricamente, Locusta.

En el *Papiro de Sagegarah* se hace referencia a las propiedades tóxicas de la almendra amarga, que, según el *Papiro del Louvre*, resulta ser el ejemplo más antiguo del uso de un veneno como medio de ejecución.

En los libros Veda (1500 a.C.), especialmente en el *Ayurveda* o libro de la Ciencia de la Vida, se encuentran citados algunos venenos y se dan recomendaciones para la terapéutica de envenenamientos con antídotos a base de miel, manteca, asafétida, etc. En la parte del Ayurveda denominada Surusta, se citan venenos vegetales como el oleandro y minerales como el arsénico y el mercurio, y se habla ya de acciones abortivas.

Salomón (972-929 a.C.) en sus *Proverbios* describe perfectamente la embriaguez alcohólica. Tanto la mitología oriental, como la griega o la romana hacen frecuente empleo de tóxicos, aunque, como dice Mata: «Los dioses no envenenan ni hacen envenenar, por ser este recurso infame e indigno de la majestad de un dios». Se refiere a los dioses de la Tierra, porque los del Mar sí intervenían en suicidios y envenenamientos mitológicos. De todas maneras, las alusiones al tema son frecuentes:

 [...] de la grieta del Parnaso, donde estaba el Oráculo de Delfos, se desprendía el ácido carbónico, y en algunos sitios el sulfhídrico, gases que aportaban sus propiedades farmacodinámicas a las ceremonias. [...] Una de las flechas de Hércules envenenada con sangre de la hidra de Lerna hirió al centauro Chirón. [...] El cazador Orion fue mordido por una serpiente venenosa. [...] Este mismo animal muerde a Eurídice cuando huye para casarse con Orfeo...

También encontramos que Anfitrite, celosa de Neptuno, envenenó las aguas donde se bañaba la ninfa Escila. La laguna Estigia exhalaba gases deletéreos y era considerada como infernal. Pero también en la tierra mitológica, la esposa de Orfeo, Eurídice, muere a causa de la mordedura de una serpiente, y la historia de Hércules repite una serie de envenenamientos, e incluso su misma muerte fue por intoxicación al ponerse la túnica mojada en la sangre del centauro Neso.

La historia mitológica de Medea es la de una envenenadora de oficio, como lo sería, históricamente, Locusta.
Encontramos en la mitología un suicidio por intoxicación, el de Estenobea, y los asesinatos de Glauc, Teseo, Ciro, etc.

Por su parte, la Biblia recoge homicidios y suicidios, e incluso leemos la recomendación de Moisés de limpiar bien de cardenillo los utensilios de cobre. En el Éxodo (7:20-21), al describir las plagas de Egipto, se recoge que las aguas del Nilo se volvieron rojas y no se podían beber, lo que ha sido interpretado como la primera referencia a una marea roja por microalgas; idéntica interpretación puede hacerse de la cita del explorador e historiador Álvar Núñez Cabeza de Vaca, al anotar (1536) que en el México precolombino se relacionaba el comienzo del año con la llegada de las mareas rojas, lo que supondría un carácter cíclico de éstas, aún no demostrado.

No puede olvidarse el establecimiento en Grecia del «Veneno del Estado», principalmente la cicuta, como medio de ejecución, y Platón registró el cuadro clínico de la ejecución de Sócrates (399 a. C.) con notable exactitud, y que a Alejandro Magno su propio médico lo intentó envenenar (331 a. C.).

Hipócrates (460-377 a. C.), llamado el padre de la Medicina, incluye en su famoso Juramento que «... jamás me dejaré inducir a administrar a nadie un veneno o un medicamento que conduzca a la muerte o al aborto...»

Teofrasto (371-287 a. C.), el más célebre discípulo de Aristóteles y el botánico mejor conocido de la Antigüedad, describió las plantas de su tiempo señalando algunas venenosas.

Dos poemas debidos a Nicander y Colofón (185-135 a. C.), aunque en gran parte fantásticos, están basados en observaciones y experiencias de tipo toxicológico; así Alexefármica refiere las propiedades tóxicas de varias sustancias, en tanto que en Theriaca, término que vino a significar antídoto, se alude a tratamientos de intoxicados.

Muy familiar es la leyenda de Mitridates VI, rey del Ponto, (120-63 a. C.), quien por miedo a ser envenenado a consecuencia de sus conflictos con Roma, tomaba regularmente pequeñas pero crecientes cantidades y mezclas de venenos para hacerse resistente a los mismos pero, tras ser derrotado por Pompeyo, al querer suicidarse, no lo consiguió por encontrarse inmunizado, y hubo de pedir a un soldado que lo matara con su espada. En su honor se denominaron mitridáticos o mitridatos a mezclas preventivas compuestas por gran número de ingredientes y confeccionadas con ritos místicos y encantamientos, y que se usaron como remedios preventivos contra la peste, las fiebres malignas y las mordeduras de los animales venenosos y envenenamientos. Una de las más populares prescripciones de este tipo, la llamada «Eltheriac» de Andrómaco, se componía de 60 ingredientes.

Por su parte, Dioscórides (40. d. C.), médico de Nerón, hizo un interesante aporte toxicológico en su De Universa Medica al discutir sobre venenos y antídotos, agrupándolos según su origen vegetal, animal o mineral.

Los romanos también hicieron de los venenos un uso político, y la corte del emperador solía tener un envenenador oficial. Éste es el caso de Locusta, una esclava que fue condenada por asesinato, pero una vez indultada se convirtió en experta envenenadora al servicio propio y del Estado. Fue encargada por Agripina para envenenar al emperador Claudio, su marido, al parecer con Amanita phalloides, y ayudó a Nerón a eliminar a su hermanastro Británico. El uso doméstico común de los venenos por las mujeres romanas dio lugar a la Ley Cornelia (81 a. C.), por la cual si el convicto de envenenamiento era patricio se le confiscaban sus propiedades y se le desterraba, mientras que si se trataba de un plebeyo se le condenaba a muerte.

A pesar de esto se llegó a refinamientos insospechados, especialmente en la forma de administrar el tóxico; en las excavaciones de Pompeya se han encontrado sortijas con cavidades para contener el veneno y con punzones disimulados para su inoculación. Los compuestos de arsénico eran los más utilizados, aunque también se empleaba el acónito, el elefanto y el cólquico. También usaron el polvo de cantáridas como afrodisíaco.

EDAD MEDIA (SIGLOS V-XV)

Para los árabes, herederos de la medicina griega, la cual desarrollaron con su química práctica mediante la preparación y extracción de medicamentos, tras inventar tres de las operaciones básicas de la química: destilación, sublimación y cristalización, no fueron desconocidos los venenos.
Así, el más prominente de los médicos árabes, Avicena (980-1037), nacido en Persia y conocido como el Príncipe de los Médicos, dedica el libro V de su Canon de Medicina a tratar las drogas y sus prescripciones; al final de su vida se permitió una existencia desordenada y murió intoxicado por un midriático preparado con opio.

El sabio sufí, nacido en Murcia y viajero continuo de España a Persia, Jabir ibn Hayyan, Gabir o Geber para los occidentales, en su Libro de los venenos de los tres reinos, mineral, vegetal y animal, establece cinco clases de espíritus: azufre, arsénico, mercurio, amoniaco y alcanfor, y reflexiona sobre la dosis tóxica.

Por su parte, el filósofo y médico judío español Moisés ben Maimón o Maimónides (Córdoba, 1135-1204) escribe en árabe ampliamente sobre medicina y farmacia; en su libro Los venenos y sus antídotos (1198), da consejos para evitar las intoxicaciones y prescribe su tratamiento. Pocos años después (1240) Federico II, emperador de Alemania y rey de Sicilia, promulgó un edicto por el que separaba la Medicina y la Farmacia, y se reglamentaba el ejercicio de ésta.

En la Edad Media se prodigaron extensamente los envenenamientos criminales y comenzó a hacerse sentir la necesidad de establecer una toxicología médico-legal. Las pruebas para descubrir envenenamientos se basaban en la observación de alguna coloración desusada del cadáver, anormal putrefacción, incombustibilidad del corazón, etc., síntomas muchas veces confundibles con los de enfermedades infecciosas. A pesar de ello, eran populares ingeniosos venenos, y la obra sobre venenos de Pietro de Albano, profesor de Ciencias en la Universidad de Padua, alcanzó amplia difusión, para tratarse del siglo XV, con catorce ediciones.

Existe abundante literatura sobre la difusión de los envenenamientos criminales en la Italia del siglo XV, y en algunas obras se destaca a la familia Borgia entre los mejores especialistas.

De la familia española Borja, Alfonso (1378-1458) era profesor de Derecho cuando fue nombrado obispo de Valencia y más tarde cardenal en Roma (donde italianizó su apellido a Borgia) y finalmente, papa con el nombre de Calixto III. Se llevó a Roma a su sobrino Rodrigo, diplomático y también cardenal y papa con el nombre de Alejandro VI; muy mujeriego tuvo numerosos hijos, entre ellos, César, cardenal (aunque renunció) y militar y cortesano de éxito (apodado Valentino), y Lucrecia, con historia o leyenda de amores, incluso incestuosos con su padre y hermanos, intrigas y uso de venenos, generalmente constituidos por compuestos arsenicales y restos de animales (ptomaínas).

Se llegó a decir que el papa Borgia, Alejandro VI, envenenó a varios de sus cardenales y él mismo fue víctima de envenenamiento, aunque en recientes trabajos aparece como inocente, y su propia muerte atribuida a una enfermedad febril, probablemente paludismo.

Es lógico pensar que los Borgia quizá no hicieron mayor uso de los venenos que algunos gobernadores de la escuela de Maquiavelo, ya que durante esta época el veneno fue un arma común en la vida social y política de las cortes europeas, particularmente de Francia e Italia; en los primeros dos tercios del siglo XV, murieron envenenados nueve sucesores de Carlomagno y cinco papas.

Alrededor de 1420, el Consejo de los Diez, de Venecia, tenía una escala o baremo de precios para el envenenamiento de las gentes; el valor dependía del rango de las víctimas y de la dificultad de aproximación al sujeto. En las actas de sus reuniones se reflejan las deliberaciones y las remuneraciones correspondientes a la eliminación de ciertas personas; el éxito de la operación se marcaba en el margen del archivo con la palabra factum, y los venenos más comúnmente empleados eran arsenicales, sublimado corrosivo y acónito.

Durante este periodo, la semiología toxicológica avanzó poco, y la detección de los envenenamientos era difícil porque se confundían los síntomas con los de muchas enfermedades. Los
alimentos defectuosamente preservados se sazonaban fuertemente y ello enmascaraba más fácilmente el sabor del veneno. La única operación de toxicología analítica consistía en dar de comer a un animal los restos del alimento sospechoso.

Por ello, la única forma de descubrir al envenenador era atraparlo en el momento de contaminar el alimento; de aquí que durante los siglos XVI y XVII los envenenamientos llegaran a constituir una seria amenaza pública en Italia, Francia, Holanda e Inglaterra; puede encontrarse una detallada relación de estos hechos en Poisons and Poisoners, de C. J. S. Thompson (1931).

Como la ya citada familia Borgia, la de los Médici también alcanzó notoriedad en el uso de los venenos; se cuenta que Alejandro, Duque de Florencia envenenó a su propia madre, y Catalina (1519-1589), sobrina del papa Clemente VII, tras casarse con el que después fue rey de Francia como Enrique II, introdujo en este país los métodos italianos, y experimentaba con los pobres la efectividad y dosificación de los venenos; también llevó a Francia, además de los perfumes florentinos, la costumbre de introducir en la comida un trozo de cuerno de unicornio (rinceroncete) para, según se decía, destruir cualquier tóxico. Iguales propiedades se atribuían a las piedras de bezoar, concreciones de origen biliar que se extraían del intestino de animales, generalmente cabras, hasta que el rey Carlos IX, hijo de Catalina, instigado por su médico, el prestigioso Ambrosio Paré, ordenó que se hiciera una experiencia con un preso, al que un boticario administró bicloruro de mercurio y seguidamente bezoar, que no contrarrestó la intoxicación, demostrándose la inefectividad del «antídoto». En Praga se realizó una experiencia similar con un condenado (1565) que, por supuesto, también murió.

La actividad más próspera de la época se desarrolló en el sur de Italia, incluida Sicilia. El más famoso de estos delincuentes fue una mujer, llamada Toffana, residente en Napóles, a quien se hizo responsable de la muerte de varios cientos de personas (unas 600) entre las que se citan los papas Pío III y Clemente XIV. Su principal preparación era el acqua toffana que por la sintomatología que ha llegado hasta nosotros parece que estaba constituida por arsénico y cantáridas; se embotellaba en frascos que mostraban la imagen de algún santo, normalmente san Nicolás de Bari, nombre asociado al de un manantial cuyas aguas parecían tener notables propiedades curativas. Fué ajusticiada en 1719.

Por el mismo tiempo aparece otro famoso veneno, conocido como acquetta de Peruzzia, el cual se preparaba espolvoreando con arsénico vísceras de cerdo; los líquidos de la putrefacción disolvían el arsénico, a cuya toxicidad se unían las ptomaínas (gr. ptoma, cadáver) producidas.

Una seguidora de Toffana fue Jerónima Spara, que operó en Roma hacia 1659 y encabezaba una sociedad secreta integrada principalmente por jóvenes casadas pertenecientes a algunas de las más opulentas familias. En reuniones regulares celebradas en casa de Spara se obtenían venenos e instrucciones para su uso. La extraña relación de jóvenes viudas con Spara promovió una investigación que concluyó con el ahorcamiento de Spara y doce mujeres más y el azote público de muchas otras.

Otro envenenamiento legendario es el de Ladislao, rey de Nápoles, de quien se dice que murió a consecuencia de una intoxicación arsénical, producida durante el coito por un algodón impregnado en el veneno y que su amante se había colocado en la vagina, quien previamente se había inmunizado mediante dosis progresivas del tóxico.

Según otra leyenda la muerte de Ladislao (1414) se produjo a causa del veneno que su hija llevaba en los labios.

EDAD MODERNA (SIGLOS XV-XVIII)

Primeros estudios toxicológicos

En el apartado anterior hemos citado las primeras obras en que se aludía a las sustancias tóxicas, pero es a partir del siglo XV cuando encontramos ya una intención de aproximación científica. Relacionaremos a continuación las principales publicaciones.

En 1472 apareció un libro de Fernando Panzzeti. El célebre alquimista Arnaldo de Villanueva escribió el Tractatus de arte cognoscendi venena cum quis timet sibi ea administrare. Santos de Ardonis, en 1592, en Venecia, el Opus de Venenis.

Jerónimo Mercurial, profesor de Bolonia, escribió el De venenis et malis venenosis.
De considerable interés histórico son los trabajos de Paracelso sobre el éter y la yatroquímica, con sus estudios sobre las dosis; se anticipó a señalar la posibilidad de que ciertos venenos administrados a dosis adecuadas podían actuar como medicamentos. Su verdadero nombre era Teofrasto von Hohenheim (1491-1541) y, al parecer, aceptó sin entusiasmo el nombre de Paracelso en honor del médico romano Celso, o según también se dice fue así llamado para indicar que estaba «próximo al cielo»; recorrió toda Europa antes de establecerse en Basilea.

Paracelso fue el primero que utilizó el concepto de dosis con un sentido cuantitativo; empleó como medicamentos cantidades apropiadas de extractos de heléboro, alcanfor, convalaria, menta, etc., y sustancias ya entonces reconocidas como tóxicas, tales como derivados de arsénico, mercurio, plomo y antimonio (tártaro emético, uno de sus favoritos), para el tratamiento de diversas enfermedades, como la sífilis, por lo que fue acusado. En 1564 publicó una Trilogía dedicada a las autoridades de Carintia (Austria); la primera parte de la obra consiste en las Siete Defensas, de las que la más conocida es la Tercera Defensa, en que hace una apología del uso de venenos con sus prescripciones y establece uno de los más importantes pensamientos toxicológicos de todos los tiempos, lamentablemente olvidado con harta frecuencia. Aunque escrito en alemán, se hizo famosa la traducción latina anotada al margen:

— ¿Hay algo que no sea veneno?
— Todas las cosas son veneno y no hay nada que no lo sea.
— Solamente la dosis determina que una cosa sea o no veneno: dosis sola facit venenum.

Merece la pena añadir aquí el pensamiento de un toxicólogo oriental del siglo pasado (Jeyaratham, Sri Lanka, 1980):

No hay sustancias inocuas, sólo hay formas inofensivas de manejárlas.
aunque, como también había escrito el inglés Peter M. Latham (1789-1875): medicamentos y venenos son a veces las mismas sustancias administradas con diferente intención.

En 1527, la obra de Matthioli de Siena alude a los polvos del archiduque de Austria como contra-veneno del arsénico, cuya virtud, según Rogneta, residía en el vino con el cual se administraba.

Un autor notable del siglo XVII es Fabricio de Hilden, con su obra Opera Omnia, que habla de los vapores malignos que el arsénico envía a las vísceras nobles y que por las venas llegan al hígado, por las arterias al corazón, y por los nervios al cerebro.

Zachias, en su Medicina legal, discute el valor de la cantidad de tóxico que se encuentra en los cadáveres, habla de las vías de penetración y de la absorción por las mucosas, afirmando como principio general que si el veneno no es absorbido no produce ningún efecto aunque se introduzca en el cuerpo.

Un autor del siglo XVI, Chioco, se preocupó por la posibilidad de que se produzcan venenos con los humores del cuerpo humano, y Reies (siglo XVII) se interesaba acerca de si era posible alimentarse con veneno y si se podrían comer animales envenenados. Courtén realizó experimentos toxicológicos en animales, en tanto que Antonio de Trilla publicó en Toledo su Tratado general de todas las tres especies de venenos, como son, de minerales, plantas y animales.

En el siglo XVIII encontramos un creciente número de autores que se van preocupando cada vez más por la toxicología. Mead, Sindor y Neuman aplican a la doctrina de los venenos la yatromatequimiatría. Gestoldy se pregunta si hay diferencias esenciales entre los distintos venenos y un remedio apropiado para todos ellos. En tanto que Hoffman intenta combatir errores existentes.

Se publica entonces un libro debido a Stenezel, que parece ser el primero de los que se han de titular Toxicología patológica médica.

Nebel relaciona signos de la intoxicación; Sprohuel experimenta con animales; Gmeli se refiere a venenos que pueden ser medicamentos; y a la inversa, Isenflam estudia medicamentos que pueden ser venenos.

Aún más fecundo en autores se presenta el siglo XIX del que el propio Orfila en Noticia bibliográfica relaciona 72. Aparece el Manual de toxicología, de Franck; el Ensayo de toxicología de Duval, donde se recomienda el azúcar como remedio para las intoxicaciones minerales; la primera edición de la Toxicología general de Orfila, donde la relaciona con la fisiología, patología y medicina legal, al igual que Armand de Montgarn, que también la relaciona con la jurisprudencia médica, y Bertrand publica su Manual médico legal de los venenos.

Eusebio de Salle presenta un cuadro sinóptico de los venenos, basado en los adelantos de la historia natural, la terapéutica y la medicina legal, relacionando los accidentes que producen con los remedios más indicados y los reactivos para reconocerlos. Lamaistre establece unas reglas para describir los venenos. Guerin de Hammers estudia la toxicología desde un punto de vista conjunto, químico, fisiológico, patológico y terapéutico.

Además de estos y otros autores que tratan de ir compilando los esparcidos conocimientos, hay otros muchos que se van especializando en determinadas sustancias: estricnina, cólquico, belladona, veneno de serpientes y de animales ponzoñosos.

Juan Fragoso, de Toledo, médico de Felipe II, escribió Eritemas quirúrgicos de los medicamentos compuestos. Encontramos ya preocupación por la toxicología ambiental y la medicina del trabajo en la obra del italiano Ramazzini (1700) De morbis artificum diatriba. Bernardino Ramazzini nació en Capri, en 1633, y fue profesor de medicina en las universidades de Módena y Padua, de la que llegó a ser rector; murió en Venecia, en 1714; en esa obra, conocida también como Enfermedades de los trabajadores dedica sendos capítulos a las diferentes profesiones (mineros, químicos, farmacéuticos, yeseros, estañadores, pintores, herreros, poceros, cloaqueros, sepultureros, tabaqueros, tipógrafos, obstetras, nodrizas, lavanderas, panaderos, cardadores de lino, cañamo y seda, agricultores, atletas, bañistas, etc.) con agudas observaciones acerca de los olores y condiciones de salubridad de los lugares de trabajo y su posible participación en las enfermedades más comunes de cada profesión, apoyándose en frecuentes citas de Hipócrates, Galeno, Avicena, Mercurial, Juvenal, Marcial, Zachea y otros autores clásicos. Sobre la contaminación del ambiente urbano escribió el sevillano Ximénez de Lorite De los daños que
puede ocasionar a la salud pública la tolerancia de algunas manufacturas dentro de los pueblos (24 de marzo de 1790, Memorias, tomo IX).

Más próximo a la época actual podemos citar a Galtier, con la Toxicología general y su Tratado de toxicología médica, química y legal; Anglada, con su Toxicología general; Pedro Mata, catedrático de la Universidad Central de Madrid, con su Compendio de Toxicología (1875).

Ambrosio Tardieu, con su obra Estudio médico-legal sobre el envenenamiento, se adelantó a su época, y aun a la nuestra, en algunos aspectos de su filosofía sobre el tema.

Rabuteau (1874), con Elementos de Toxicología y medicina legal, y Briayd y Chaudi publicaron una obra titulada Química legal, donde, además del análisis químico de los venenos, relacionan los procedimientos analíticos para manchas de sangre, esperma, materia cerebral, etc., en la línea del pensamiento de Tardieu, que propugnaba la actuación de unos peritos especializados en estas materias y diferentes del médico forense. Esta misma orientación la da Dragendorff, catedrático en Dorpat, en sus Manuales de Toxicología (1886-1888).

Nacimiento de la toxicología judicial o forense

La frecuencia de envenenamientos en Francia determinó que las autoridades comenzaran a designar a peritos médicos y químicos, y se dictó una ley que obligaba a recurrir a tales asesoramientos, y aunque en muchos casos las intervenciones dieran muy poco resultado por ser la Química muy rudimentaria, estimularon a los peritos a estudiar el desarrollo de técnicas de análisis, con lo que se inició la verdadera Toxicología analítica.

Fue famoso el proceso de madame Brinvilliers, hija del conde Dreux d’Aubray, mujer hermosa e inteligente (1630-1676), de conducta escandalosa, quien con su amante produjo una serie de envenenamientos, incluido el de su esposo. Aunque los peritos no tuvieron éxito en la investigación, posteriormente el amante murió en su laboratorio, mientras preparaba un gas tóxico, posiblemente arsenamina o arsina, al romperse la máscara con la que se protegía.

Otra envenenadora famosa fue Catalina Desha yes, conocida como «la Voisin» (1680), que regentó un lucrativo negocio para la venta de venenos a mujeres deseadas de enviudar y estuvo...
implicada en un atentado frustrado contra la vida de Luis XIV, al proporcionar lo que después se llamaron «polvos de sucesión», compuestos, según Plenck, de arsénico y azúcar de saturno (ace-tato de plomo). Usó también acónito, belladona y opio, y se dice que mató a unos 2.000 niños en un trágico sistema de planificación familiar.

Era tal el temor a los envenenamientos que, según Cesalpino, además de la antigua costumbre de hacer probar la comida a los servidores, se utilizaban vajillas de «electro», muy bruñidas, para detectar, por medio de su empañamiento, la presencia de algún tóxico.

EDAD CONTEMPORÁNEA (SIGLOS XIX-XXI)

Una serie de procesos judiciales que se hicieron famosos, como los de madame Lafargue, madame Lacoste, Couty de La Pommerais, en Francia; el de Helena Jegado en Holanda, el de Lidia Fougines en Bélgica, significaron importantes jalones en el desarrollo de la ciencia toxicológica, al obligar a los peritos de los tribunales no sólo a intensificar sus estudios, sino incluso a enfrentarse entre ellos, como el proceso Boursier, que, en 1823, enfrentó a Orfila, Gaedy y Barruel.

En 1830, el químico inglés James M. Marsh (1789-1846) desarrolló un método para evidenciar la presencia de arsénico en vísceras y alimentos que contribuyó en parte a disminuir los envenenamientos mediante este elemento químico. Este método, descubierto en 1775 por el químico alemán Carlos Guillermo Scheele (1742-1786), basado en la liberación del arsénico en forma de arsina, mediante reducción con hidrógeno naciente, y sublimación del elemento al incidir una llama de los gases desprendidos sobre una placa fría, fue utilizado judicialmente por primera vez en el proceso Lafarge (1842), donde intervinieron las insignes figuras toxicológicas de la época, Orfila (por parte de la acusación y de la Justicia) y Raspail (por parte de la defensa). Detalles de aquella discusión pueden encontrarse en la obra de Balthazard Orfila et l'affaire Laffarge.

Pedro Mata, en su *Compendio de toxicología general y particular* (Madrid, 1875), aunque lo dedicara «A la memoria del grande Orfila, eterno recuerdo», repetidas veces crítica a éste, en favor de Anglada, llegando a decir que la obra de Orfila, más que un estudio de toxicología es un «tratado de los venenos». Sin embargo, es internacionalmente reconocido que uno de los fundadores de la moderna ciencia toxicológica fue Mateo José Buenaventura Orfila (1787-1853) (véase *Textbook of toxicology*, Kenneth y Gelling, Oxford University Press, 1959, New York, y numerosas publicaciones posteriores e incluso actuales).

Nacido en Mahón, en la isla de Menorca, recibió su primera educación en Valencia y Barcelona; después se trasladó a París, donde se graduó en Medicina en 1811, estudiando también Química. Ocupó la Cátedra de Química reemplazando a Vauquelin discípulo a su vez, de Lavoisier, y es interesante consignar que recibió una carta del primer ministro de Fernando VII en la que le hacía saber que el rey le nombraba profesor de Química en Madrid, en sustitución de M. Louis Prust; pero al condicionar Orfila su aceptación a un plan de estudios químicos, quedó frustrado su regreso a España.

En 1813 publicó *Elementos de Química y Tratado de las exhumaciones Jurídicas*, y en 1814, su *Tratado de Toxicología* en dos volúmenes, obra clásica y fundamental que aún hoy es reconocida como la primera obra completa de importancia internacional (Backer, 1993). Desarrolló multitud de pruebas para identificar los tóxicos, que agrupa en seis clases. En su obra describe además las propiedades físicas, químicas, fisiológicas y tóxicas de las sustancias, deteniéndose en los métodos de tratamiento.

Experimentó con animales a los que administraba cantidades conocidas de sustancias, observando la sintomatología de la intoxicación, y después de muertos examinaba los órganos y analizaba los tejidos. Entre sus más importantes contribuciones destaca el descubrimiento de que los tóxicos se acumulan en diferentes tejidos.

Fue profesor de Medicina Legal de la Universidad de París, y, en 1821, publicó su libro de texto titulado *Lecciones de Medicina Legal*, que, en número de 60, recogía sus explicaciones universitarias. En 1831 llegó a ser decano de la Facultad de París y presidente de la Academia de Medicina, lo cual no deja de ser un testimonio de la valía de nuestro compatriota, que, por muy «afrancesado» que fuera, no dejaba de ser un extranjero en Francia.

Viajó en 1816 y en 1846 a Mahón y Barcelona, Madrid y Sevilla, donde le recibieron sus Academias de Medicina.
Se retiró en 1848, aunque siguió escribiendo y sus libros sobre tóxicos y Medicina Legal estuvieron ampliamente difundidos y sirvieron de base para el desarrollo de estas ciencias en otros países. Así, sir Robert Christison (1797-1882), después de graduarse en Medicina por la Universidad de Edimburgo, fue a París a estudiar toxicología con Orfila, para ser nombrado a su regreso Catedrático de Medicina Forense y Materia Médica de la Universidad de Edimburgo. Escribió A treatise on poisons, un excelente libro que fue ampliamente usado y reimpreso, siendo su cuarta edición, en 1845, la primera americana.

Christison llegó a ser uno de los principales médicos consultantes de Escocia e hizo importantes contribuciones a la farmacología, preocupándose especialmente en proporcionar bases científicas a la toxicología. Las ediciones americanas de los textos de Orfila y Christison estimularon a los autores norteamericanos, entre los que destaca Henry Coley, con su trabajo Poisons and asphyxia (1832).

En esta época dejan de emplearse en parte los venenos tradicionales, dando quizá la razón a Tar-dieu, quien propugnaba que debía evitarse la difusión de los conocimientos toxicológicos. Envenenadores más refinados recurren a extractos vegetales con alcaloides, cuya química poco conocida dificultaba el descubrimiento del delito. En este orden se citan los casos del doctor Castaing, que utilizó acetato de morfina, y la relativa profusión que alcanzó en Inglaterra el empleo de la estricnina.

El esfuerzo de los peritos iba dando frutos; tras la prueba de Marsh para el arsénico, Reinsh desarrolla en 1841 sus ensayos para el arsénico y el mercurio; y en 1840, Fresenius y Von Babo proponen una sistemática para la detección de los diferentes venenos inorgánicos.

Un escalón importante se alcanza en Bélgica cuando, en 1850, se procesa al conde Hipólito de Bocarmé, acusado de haber asesinado a su cuñado. Designado perito el químico Jean Servais Stas (1813-1891) desarrolla un procedimiento de extracción de alcaloides de las vísceras y consigue separar de éstas el veneno utilizado: la nicotina.

La trascendencia de este descubrimiento es tal, que el procedimiento de Stas, ligeramente modificado por Otto y posteriormente por Ogier, sigue aún utilizándose por los toxicólogos actuales, habiendo resistido cuantos intentos se hacen continuamente para sustituirlo por otras técnicas de extracción y fraccionamiento, pues tan sólo se ha conseguido completar ligeramente la sistemática y adicionarle técnicas modernas de purificación de los extractos, aunque éstos sean luego estudiados por la técnica instrumental moderna, por lo menos, hasta la introducción de los métodos de extracción «en fase sólida».

Otros procesos judiciales, el seguido en Francia contra el médico homeópata Couty de La Pommerais, acusado de haber asesinado a una viuda para apoderarse de un seguro, dio ocasión a Tardieu y Roussin para iniciar las aplicaciones de la experimentación fisiológica en la identificación de los venenos, demostrando los efectos de la digitalina en ranas. No es preciso aclarar que ningún perito actual se basaría tan sólo en estos datos para establecer una afirmación acusatoria, ya que desde Ogier conocemos la producción de glucósidos en la putrefacción, y desde Selmi, las ptomaínas.

En Italia, en 1870, la muerte del general Gibbone es atribuida a un sirviente que es condenado a muerte porque los peritos detectaron en las vísceras una sustancia alcaloide con reacciones semejantes a la delfinina. Pero el químico Selmi, de Bolonia, descubre que los alcaloides se formaron durante la putrefacción y los denominó ptomaínas (del gr. ptoma, cadáver). Selmi comunicó su descubrimiento a la Academia de Ciencias de Bolonia, y continuó durante diez años experimentando con vísceras de animales, tratando de diferenciar las ptomaínas de los alcaloides vegetales. Posteriormente, Gauthier, en Francia, establece por distintas vías la formación de las ptomaínas en la putrefacción de los albuminoides (Capítulo 4, Tabla 4.4).

Estos descubrimientos resultaron trascendentales para la toxicología, especialmente en su rama judicial, al exigir una mayor profundidad química al análisis toxicológico, para obtener la necesaria garantía, que en realidad no se ha logrado hasta el advenimiento de la instrumentación quimico-física, del tipo de la cromatografía de gases o de líquidos, la espectrofotometría en los rangos ultravioleta o infrarrojo, o de absorción atómica, la espectrometría de masa, la activación neutrónica, etc.

La Toxicología como auxiliar de la Justicia ha funcionado en las distintas épocas y países de muy distinta manera. En un principio eran los médicos forenses los obligados no sólo al examen
macroscópico del cadáver, sino también al análisis químico de las muestras biológicas, procedimiento que aunque apoyado por ilustres autores no deja de ser absurdo (como decía Tardieu), al exigir a unos profesionales la especialización en materias tan diversas como puedan ser la patología forense, el análisis químico, o la criminalística con sus facetas de estudio de manchas, de restos de pinturas, de huellas de personas, animales o vehículos, de trozos de vidrio, de documentos, etc., todo lo cual ha desembocado modernamente en las diferentes especialidades de Ciencias Forenses y de Policía Científica.

En algunos países hay centros de toxicología judicial, pero lo más frecuente es que los análisis toxicológicos de interés legal se realicen en los laboratorios de la Cátedra o Instituto de Medicina Legal. Existe también la modalidad seguida en Francia y Bélgica, por ejemplo, donde hay unos peritos individualmente reconocidos que pueden realizar las investigaciones en laboratorios privados, cobrando sus honorarios a la acusación o a la defensa, según a quien interese el estudio.

En España, el gobierno nombró en 1855 una comisión para elaborar un proyecto de cuerpo de médicos forenses, en tanto que para las peritaciones de laboratorio, especialmente las que requerían análisis químicos, disciplina muy poco desarrollada aún, se designaba en 1858 al Catedrático de Medicina Legal y Toxicología de Madrid, junto con el Catedrático de Química y Física Medicas o el de Historia de la Medicina.

Posteriormente, en 1862, se autoriza a los jueces de primera instancia a encargar los análisis a los farmacéuticos, y en su caso, consultar a las cátedras de Medicina Legal de quinto curso de Farmacia, de cualquiera de las universidades españolas. Pero los catedráticos y los farmacéuticos llegaron a negarse a realizar los análisis sin remuneración, entrando la administración de justicia en una situación caótica, que trató de resolver mediante el Real Decreto de 11 de julio de 1886, por el que se crearon los Laboratorios de Medicina Legal dependientes del Ministerio de Justicia, que en 28 de abril de 1911 se denominaron Instituto de Análisis Químico-Toxicológico, transformado el 10 de julio de 1935 en Instituto Nacional de Toxicología, con tres departamentos de carácter regional, enclavados en Madrid, Barcelona y Sevilla. Posteriormente, un Decreto de 13 de julio de 1967 reorganizó este Instituto calificándolo como centro nacional técnico en materia toxicológica, mejorando su constitución e instalaciones y abriendo la posibilidad de colaboración con los demás estamentos de la Administración. Es decir, que además de su función de auxiliar de la Justicia, se atribuye al Instituto Nacional de Toxicología una intervención más activa como órgano de información de la Administración en general y se le autoriza para difundir los conocimientos en materia toxicológica, considerándosele, además, Centro de Asesoramiento e Información, y se le faculta para evacuar los informes y consultas que se le formulen en relación con la prevención y lucha contra las intoxicaciones, y la información toxicológica en general. En este orden, el 1 de febrero de 1971 comenzó a funcionar en el Departamento de Madrid el primer Servicio de Información Toxicológica por teléfono que existió en España; en 1990 se formalizaron los servicios de Barcelona y Sevilla que, con posterioridad, fueron lamentablemente suprimidos.

En la actualidad está variando el esquema de los servicios de la toxicología forense en España, con la creación de Institutos Provinciales de Medicina Legal dotados de laboratorios y, al parecer, reservando para el Instituto Nacional de Toxicología y Ciencias Forenses un papel de centros de referencia. El gran reto de los nuevos institutos es la homogenización de criterios y el acatamiento de los códigos de Garantía de Calidad.

<table>
<thead>
<tr>
<th>Tabla 1.1. División actual de la Toxicología Forense.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicología Postmorte</td>
</tr>
<tr>
<td>Drogas de abuso</td>
</tr>
<tr>
<td>Toxicología conductual</td>
</tr>
<tr>
<td>Toxicología ambiental</td>
</tr>
</tbody>
</table>

Modificado de Kunsman, 1999.
Progresos en los conocimientos toxicológicos

Independientemente de la toxicología judicial, aunque quizá forzada por ella, tenía que desarrollarse una toxicología básica o farmacológica. Tardieu llegó a negar la existencia de la toxicología como ciencia, alegando que los venenos no forman un orden natural. Claude Bernard decía que toda sustancia introducida en el organismo y extraña a la constitución química de la sangre es un medicamento o un veneno. Sin embargo, ha quedado bien comprobada la teoría de Paracelso respecto a que la toxicidad es, en el fondo, una cuestión de dosis.

Se requería, por tanto, que los farmacólogos y fisiólogos aportasen su estudio a la parcela toxicológica. Había que saber primero cómo penetran los tóxicos en el ser vivo, y a través de qué vías, conocer los procesos de difusión en el medio interno (Velázquez, 1962); completar la observación de Orfila de que los tóxicos pasan del aparato digestivo a diferentes órganos con una cierta selectividad, adelantándose a la Toxicocinética y a la teoría de la difusión merced a las proteínas transportadoras, estudiado a distintos niveles por numerosos autores, desde Anton Nicolai (1798), que muestra cómo el almizcle se absorbe por la lengua; Chrestien (1810), quien recomendaba la aplicación de sales de oro sobre la lengua y encías para el tratamiento de la sífilis; Karmel, que, en 1873, observó cómo el alcohol es absorbido por vía sublingual; o el escocés Wood (1844), con la comprobación de la administración de sustancias mediante inyecciones, hasta los italianos Coprano y Meli, con el estudio ecuacional de la absorción de diferentes sustancias, y los más recientes, pero ya clásicos, de Ariens y Goodman y Gilmann (1972), con sus esquemas de transporte, activación y desactivación de las drogas.

Interesaba, además, conocer la relación de dosis a efecto, para lo cual aparecieron los conceptos de dosis tóxicas, dosis letal, dosis letal media (Trevan), dosis letal mínima (Lucchelli), y los importantes trabajos de Schackell, de Carpenter, Powers, y tantos otros que tratan de llevar a fórmulas matemáticas y gráficas los conocimientos farmacológicos aplicándolos a la toxicología.

De especial trascendencia es el desarrollo del concepto de toxicidad selectiva, partiendo del de quimioterapia de Ehrlich, y ampliamente estudiado por Albert desde 1951, considerando factores de bioquímica comparativa y biología molecular, permeabilidad celular, constitución estérica de las moléculas, fenómenos de ionización y quelación, etc., que abrieron el camino para tratar de explicar por medio de la teoría de orbitales moleculares los fenómenos e interreacciones de las drogas con los receptores biológicos (Kier, 1971).

Y todo este esfuerzo para profundizar en el conocimiento toxicológico se dirige fundamentalmente a la prevención y el tratamiento de las intoxicaciones, dando origen a una moderna rama de la toxicología cuya es la «Toxicología Clínica», que, como afirman Boyland y Goulding en su *Modern trends in toxicology* (1968), adquiere una orientación diferente de la medicina forense, como lo demuestra la considerable atención que investigadores, gobiernos, industriales e incluso el público, dirigen hacia los problemas que presenta el tratamiento de las intoxicaciones, efectos secundarios de los medicamentos, etc. Comités internacionales de expertos se ocupan de la evaluación de la toxicidad de las drogas, las acciones teratogénicas, la relación con los trastornos metabólicos, las interacciones entre medicamentos, etc. (Davey, Paget, Schorz, etc., 1963).

Fuhner, en 1956, alaba la obra de Zangger *Inxicaciones* (1924), que trata especialmente de los errores más frecuentes en su tiempo acerca del diagnóstico y la terapéutica de las intoxicaciones. Ya decía Zangger que «los médicos tan sólo diagnostican la cuarta parte de las intoxicaciones», hecho lamentable que únicamente puede remediar-se enseñando mejor la toxicología. En este mismo sentido se expresa Fournier cuando, en 1968, se muestra insatisfecho, aunque el Ministerio de Educación Nacional francés haya reconocido la necesidad de una enseñanza de Toxicología en Medicina (véase más adelante).

TOXICOLOGÍA CLÍNICA.
CENTROS ANTITÓXICOS

Actualmente se calcula que un 1 por 100 de los ingresos generales en hospitales se debe a intoxicaciones, y el 8 por 100 de todas las autopsias que se realizan en el mundo son por muerte tóxica.
De la misma manera que la Psiquiatría se desarrolló en el seno de la Medicina Legal, para después constituirse en materia médica independiente, así la Toxicología ya no es tan sólo una faceta de la Medicina Legal, como no lo es de la Química Analítica: la amplitud de las materias y el elevado número de sustancias químicas, que bajo tantas formas y de manera continua están en contacto con el hombre, exigen una personalidad propia de las nuevas ramas de la Toxicología, especialmente de la Química toxicológica y de la Toxicología clínica.

Ésta tendrá por fines la prevención, el diagnóstico y el tratamiento de las intoxicaciones que, como cualquier enfermedad, pueden manifestarse con curso agudo o crónico, presentando, en cada caso, diferentes exigencias terapéuticas.

Las dificultades en alcanzar estos objetivos han suscitado la creación de un sistema intermedio, con personal especializado en proporcionar información toxicológica con fines de prevención y tratamiento. Éste sistema está constituido por los «Centros de Lucha contra las Intoxicaciones», iniciados en 1952 en Estados Unidos y desarrollados hoy en todos los países. El interés y utilidad de estos centros se deduce claramente del hecho de que en Estados Unidos llegaron a funcionar en la década de 1980 unos 600 centros, aunque la aplicación de criterios de calidad ha disminuido la cifra a la décima parte (véase Capítulo 12).

De las observaciones estadísticas de los centros antitóxicos (CAT) surgió la necesidad de los Servicios de Farmacovigilancia y, más tarde, de los de Toxicovigilancia (Capítulo 12), con el fin de proteger a la población de los riesgos tóxicos.

El manejo por la industria de grandes cantidades de compuestos químicos, así como su transporte y almacenaje incrementan el riesgo de accidentes y consecuente afectación de los seres vivos, al igual que el empleo de sustancias químicas en acciones de guerra y de terrorismo. Todo ello ha provocado profunda preocupación en ambientes gubernamentales y clínicos con el desarrollo de programas de prevención y de tratamiento del medio ambiente y de los individuos afectados por sustancias especialmente peligrosas, internacionalmente conocidas como HAZMAT, acrónimo de la expresión inglesa hazardous materials. En el Hazardous Substances Data Bank (http://toxnet.nlm.nih.gov/help/toxnet_update.html) hay registradas casi 5.000 sustancias potencialmente peligrosas y datos sobre la exposición humana así como recomendaciones para el tratamiento de urgencia tras la exposición. A otras muchas bases de datos puede accederse a través de nuestro portal de Buscatox, que incluye también un módulo de aprendizaje: http://busca-tox.com.

TOXICOLOGÍA INDUSTRIAL Y AMBIENTAL

En el siglo XX ha adquirido extraordinaria importancia la toxicología industrial, y, de forma más amplia, la laboral u ocupacional hasta el punto de haber promovido en varios países (entre ellos España, en 1973) una nueva especialidad profesional. Este hecho se debe a las siguientes circunstancias:

- **a)** La considerable expansión de la industria.
- **b)** El crecimiento simultáneo de las diferentes ramas de la química industrial: orgánica, de los plásticos y resinas, alimentaria, farmacéutica, agrícola y química nuclear.
- **c)** El reconocimiento de los derechos del trabajador contra los posibles peligros tóxicos en el seno de la industria.

El último punto requiere especial atención, pues el reconocimiento de los derechos del individuo a condiciones higiénicas de trabajo ha sido difícil de conseguir. Ya hemos citado los antecedentes históricos de Ramazzini y Ximénez de Lorite en el siglo XVIII, y aunque la legislación sobre el tema parece muy reciente, hay que recordar que el 30 de enero de 1900 fue promulgada en España la Ley de Accidentes del Trabajo, con reglamentos de aplicación aprobados por Reales Decretos de 28 de julio y 2 de agosto. En ella, aparte de especial preocupación por los accidentes, se atiende a la pureza del aire, ordenando la existencia de aparatos depuradores, filtros e instrumentos para comprobar su calidad, así como las precauciones recomendables para el manejo de sustancias tóxicas.

Sin embargo, Oliveras y Soler, en *Elementos de higiene industrial* (1929), criticaron duramente algunas de las prevenciones de la Ley, por insuficientes.
Suiza fue la primera nación que estableció indemnizaciones para la enfermedad profesional, e Inglaterra y Francia publicaron las primeras listas de enfermedades, aunque comprendían un número muy reducido y destacaban como principales el saturnismo y el hidrargirismo.

A partir de 1917 se impulsó en Rusia extraordinariamente la Medicina del Trabajo, para lo cual se instituyeron centros especializados en Charkow, Moscú, Leningrado, etc., mientras que Alemania, Austria, Hungría y Checoslovaquia adoptaron el sistema de Seguro de Enfermedad, y en las repúblicas hispanoamericanas se consideraba al enfermo profesional con los mismos derechos que el accidentado en el trabajo.

En España se promulgó, en 1947 un Decreto de Clasificación de Enfermedades Profesionales, que establecía las Normas Médicas por las cuales han de regirse los reconocimientos, diagnósticos y la calificación de una serie de enfermedades profesionales, como las producidas por los ácidos sulfúrico, sulfuroso y sulfhídrico, por los hidrocarburos alifáticos halogenados, por el sulfuro de carbono, por los nitro y aminoderivados de los hidrocarburos aromáticos, arsénico y sus compuestos, los isocianatos, el vanadio y sus compuestos, el mercurio, los derivados halogenados de los hidrocarburos aromáticos, etc., regulación que ha sido modificada por diferentes disposiciones posteriores, hasta confluir en el Instituto Nacional de Higiene y Seguridad en el Trabajo creado en abril de 1970, dependiente del Instituto Nacional de Previsión, del Ministerio de Trabajo, denominado después Servicio Social de Higiene y Seguridad en el Trabajo, integrado en el Ministerio de Sanidad y Seguridad Social (1977) y, posteriormente, de nuevo en el de Trabajo.

De manera similar habría que considerar la contaminación ambiental urbana, con su incidencia en la salud del ciudadano, en el paisaje y en las obras culturales, sean pictóricas, escultóricas, arquitectónicas o de ingeniería, así como la contaminación de los espacios naturales, sus animales y su vegetación, todo ello materia de la toxicología ambiental y de la ecotoxicología. Muy expresivamente, G. Persoone distingue ambas ramas, considerando que para la toxicología ambiental es crítico o crucial que se afecten o mueran algunos individuos, pero la ecotoxicología sólo se interesa cuando se producen desequilibrios en el ecosistema.

TOXICOLOGÍA BROMATOLÓGICA Y FARMACÉUTICA

Asimismo, han adquirido imprescindible utilidad los estudios de bromatología toxicológica, para el control sanitario de los alimentos, en servicios que en España dependen de la Agencia Española de Seguridad Alimentaria (2001), del Ministerio de Sanidad, así como de los respectivos servicios de las Comunidades Autónomas o regionales, de la misma manera que la Dirección General de Farmacia del Ministerio de Sanidad y Consumo (R. D. de 1 de febrero de 1979), con su Agencia Española de Medicamentos y Productos Sanitarios (1999), también es la responsable de la autorización de un medicamento para que pueda ser dispensado en el país.

En relación con la bromatología hay que aludir al problema de la contaminación de los alimentos por sustancias químicas voluntariamente añadidas por el fabricante o formando parte de la contaminación ambiental. Entre las primeras, los conservadores, acondicionadores organolépticos, odorantes, colorantes, hormonas, antibióticos, antisépticos, etc., que producen fenómenos tóxicos a corto o a largo plazo; y en el segundo caso los residuos de insecticidas, especialmente organoclorados, que por su persistencia se encuentran en los alimentos de procedencia vegetal y animal (p. ej., leche) y que se acumulan en nuestros tejidos grasos. Como hemos demostrado, el 100 por 100 de nuestros conciudadanos adultos estudiados contenían DDT y bifenilos policlorados (productos de amplia utilización tecnológica), al igual que el 70 por 100 de las leches maternas humanas, y el 30 por 100 de las muestras de sangre obtenidas del cordón umbilical, lo cual indica que muchos niños nacen contaminados por tales productos, incluso bastantes años después de la retirada del DDT del mercado. En nuestro segundo estudio epidemiológico vimos que en el medio rural aún persistía el DDT, mientras que en el urbano prevalecen los BPCs (Repetto et al., 1974; Martínez et al., 1993). Ante la enfermedad de Minamata, que apareció en Japón y se comprobó que era debida a intoxicación de los peces por compuestos de alquimcurio procedentes de aguas residuales de fábricas de papel, se han desarrollado campañas de control de la contaminación alimentaria por mercurio y se han promovido interesantes estudios epidemioló-
gicos de la contaminación marina. El metilmercurio, por ser liposoluble, atraviesa la barrera hemoencefálica y produce lesiones irreversibles. En abril de 1973, el Ministerio de Gobernación dispuso una ordenación analítica para la detección de dicha contaminación tóxica en los peces destinados al consumo humano.

El establecimiento por la OMS del IDA o máxima ingesta admisible de una sustancia en la totalidad de la dieta diaria, así como las directrices de la Comisión de la Unión Europea sobre niveles límites de contaminantes en alimentos y bebidas, están dando origen a una homogeneización de las legislaciones en los distintos países.

Tanto la Organización Mundial de la Salud (OMS) como el gobierno de los EE UU y la Unión Europea han establecido las «lista positivas» y «negativas» de aditivos alimentarios permitidos o prohibidos y las cantidades o ingestas diarias admisibles (IDA) para cada uno de ellos; la UE ha iniciado la reevaluación de 300 productos edulcorantes, colorantes y aromatizantes empleados actualmente en los alimentos.

Igualmente, cada vez se hacen más estrictas las legislaciones y las medidas para el control de la presencia de metales, medicamentos, plaguicidas y otros contaminantes en los alimentos, y del uso de productos para el engorde fraudulento de animales de consumo humano.

Ya hemos citado la creación del Servicio de Farmacovigilancia, para el control de las reacciones adversas de los medicamentos, cada vez más importantes y frecuentes como consecuencia de la proliferación de aquéllos y su empleo a veces abusivo o indiscriminado (polifarmacia), que causa sensibilizaciones y fenómenos tóxicos por sobredosificaciones, sinergias, incompatibilidades, etc.

La toxicología farmacéutica es una importante área dedicada al estudio de las cualidades tóxicas de los medicamentos, márgenes de seguridad, riesgos que comporta su uso, reacciones adversas, etc., tanto de forma inmediata como a largo plazo y en la descendencia.

Entre los riesgos secundarios que deben prevenirse figuran algunos poco sospechados, como los que se provocan tras la administración continuada de medicamentos antiansiedad y somníferos que, se ha visto, incrementan la incidencia de reacciones alérgicas, alucinaciones, comportamientos anómalos en la alimentación o durante el sueño, como el sonambulismo, o una variante de éste que se ha denominado síndrome alimentario nocturno, que conduce al sobrepeso.

TOXICOLOGÍA REGULADORA (LEGISLACIÓN TOXICOLÓGICA)

En relación con lo expuesto anteriormente, es preciso destacar que la toxicología ha llegado a ser una de las disciplinas científicas que está dando origen en nuestros días a mayor cantidad y diversidad de normativas legales.

Disposiciones ministeriales o interministeriales, por propia iniciativa o como cumplimiento de recomendaciones o directrices de organismos internacionales, están produciendo un extenso cuerpo legal de raíz toxicológica. Como ejemplos citaremos las normativas que establecen límites legales de alcohol, medicamentos o drogas de adicción en sangre, orina o aliento de conductores de vehículos públicos o privados; de contaminantes o aditivos en alimentos y bebidas de consumo humano y animal; de emisión o de inmisión de contaminantes ambientales, tanto en términos generales como en el ambiente laboral; de niveles de xenobióticos, o sus metabolitos, en fluidos corporales de trabajadores expuestos, etc. Igualmente, deben citarse las normativas para la clasificación por toxicidad de las sustancias químicas y de los estudios toxicológicos exigidos para que sea autorizada la comercialización de medicamentos, plaguicidas, productos cosméticos, domésticos o industriales, etc.

Muchas de las disposiciones proceden en Europa, de las directrices de la Comisión de la Unión Europea. En su seno hay constituido un comité científico asesor en materia de toxicología y ecotoxicología, denominado Comité Científico de Riesgos Sanitarios y Medioambientales, integrado por un representante de cada país miembro. Dicho comité estudia los problemas toxicológicos, frecuentemente después de consultar a especialistas en temas concretos, y elabora informes que la Comisión tendrá en cuenta al redactar sus directrices; éstas serán seguidamente acatadas y transformadas en legislación nacional por los Estados miembros. Además, la UE ha creado (2006) la Agencia Europea de Compuestos Químicos (ECHA), encargada de cumplimentar la llamada Regulación REACH (veánsé Caps. 2 y 11).
De todo ello ha derivado el desarrollo de una toxicología reguladora, que supone, según Van de Venne y Berlin (1990), el empleo de la toxicología con fines legislativos.

Como observación final en relación con la evolución y desarrollo de la toxicología, pudiera decirse que esta ciencia, que nació como auxiliar de la Justicia, colabora actualmente con el Legislador ofreciéndole bases para legislaciones que velen por el bien común (véase «Referencias toxicológicas en la legislación española», Cap. 2).

En definitiva, lo que las legislaciones pretenden es minimizar el riesgo que los agentes físicos y químicos representan para los seres vivos; partiendo de lo que se ha llamado sociedad del riesgo, en que se vive sometido a las acciones persistentes o intermitentes de elementos en que se basa o derivan de nuestra forma de civilización.

TOXICOLOGÍA MECANISTICA

Creemos que la toxicología ya ha superado la etapa de ciencia descriptiva, de acumulación de datos, de listados de sustancias y de sus dosis tóxicas agudas y letales, aunque prosiga el desarrollo de subespecialidades órgano-específicas (neurotoxicología, dermatotoxicología, nefrotoxicología, inmunotoxicología, genotoxicología, toxicología genética, etc.).

Efectivamente, podemos ver que la tendencia de la toxicología en los últimos 20 años es la comprensión de los fenómenos en términos de toxicología bioquímica o toxicología molecular. Esa es, para nosotros, la línea más potente del desarrollo de la toxicología: el mejor conocimiento de las interacciones entre los xenobióticos y las biomoléculas y, aún más entre las moléculas exógenas y los mediadores intracelulares, todo ello interpretado a la luz de los progresos en genética, polimorfismos enzimáticos (por su variabilidad bioquímica) y de los estudios poblacionales. Esto requerirá una mayor atención de los toxicólogos a la bioestadística, que se ha establecido como importante ciencia auxiliar; solamente con la experta aplicación de esta herramienta podrán establecerse adecuadamente los límites máximos permitidos de contaminación ambiental urbana y en el medio laboral y en los alimentos, así como se podrán encontrar las causas de algunas enfermedades, como ciertos trastornos mentales y neurológicos, cuya incidencia está creciendo insistentemente sin que aún conozcamos su etiología, y en definitiva considerar más ajustadamente que ahora los grupos de riesgo.

La toxicología mecanisticista o mecanística busca la identificación de todo el entramado molecular que conduce desde la exposición inicial al tóxico hasta la última manifestación de trastorno en el organismo. Así, pretende encontrar las explicaciones moleculares de cómo los xenobióticos penetran en el organismo, se distribuyen, biotransforman y excretan (es decir los procesos toxicocinéticos), cómo los xenobióticos o sus metabolitos ejercen sus efectos a través de interacciones moleculares (toxicodinámica) y, finalmente, cómo la célula, el órgano o el cuerpo reacciona frente al ataque, con respuestas que pueden ser adaptativas, de tolerancia o de reparación o bien sucumbiendo al daño.

Como veremos, en ocasiones estos procesos son sencillos, se desarrollan en un único nivel, pero frecuentemente tienen lugar a través de cadenas o cascadas de acontecimientos bioquímicos.

La Toxicología está cambiando rápidamente, principalmente a causa de los avances en los conocimientos de los cambios producidos en las señales de transducción celular causados por las sustancias químicas, sean endo o xenobióticos. Tienen especial actualidad las proteínas de superficie celular (cadherinas, integrinas etc.), los factores de transcripción y de transporte (chaperonas), las quinasas del estrés (MEKK), la proteínquinasa mitogénica (MAPK), los factores antianti y proapoptóticos (caspasas, Bcl, factores de necrosis, caspasa-citocromo c, etc.), proteínas GTP, interacciones de proteínas Ras-Raf, el papel de las mitocondrias, y las numerosas cascadas de señales.

Se está desarrollando con gran fuerza la Toxicogenómica, ciencia que estudia las modificaciones de la expresión de los genes por la acción de los tóxicos, que está soportada por las nuevas tecnologías, como el «microarray», que permiten evaluar masivamente los cambios en la expresión génica. Combina la información de los estudios a escala genómica (perfiles de expresión de ARNm), a escala proteómica (perfiles proteicos globales, tanto celulares como tisulares), de la susceptibilidad genética y de los modelos computacionales, para comprender el papel de las interacciones gen-ambiente (Rockett, 2003).
En paralelo con la moderna Farmacogenética, está evolucionando la Toxicogenética, que se define como el estudio de la variabilidad clínica en la respuesta a los xenobióticos, como consecuencia de la participación de determinados genes concretos que presentan los llamados polimorfismos, y que a menudo refleja diferencias en la actividad de enzimas biotransformadoras, de las proteínas transportadoras y de los receptores (véase Capítulo 7).

La explosión en el descubrimiento de muchas variantes de secuencias de ADN, particularmente de polimorfismos de un solo nucleótido (SNPs), predicen que casi 1,5 de estos nucleótidos pueden ser funcionalmente importantes. El tipado de alelos de forma predictiva podría incrementar la eficacia de los medicamentos así como mejorar su selección para cada paciente y reducir sus efectos indeseables.

Ya se han caracterizado numerosos polimorfismos en los genes humanos, lo que abre nuevas perspectivas, pues la identificación y caracterización de nuevos polimorfismos en los genes que expresan enzimas han de tener una gran aplicación preventiva.

Toxicología de sistemas *(systems toxicology)*

Consiste en un estudio integrado o multidimensional de la respuesta de los organismos frente a los tóxicos, aplicando tanto los métodos tradicionales como los modernos, es decir, la observación clínica, el análisis químico toxicológico, la toxicocinética, los análisis bioquímicos y biomarcadores (de exposición, de efecto y de susceptibilidad), los estudios histológicos, el análisis molecular de expresión de genes, toxicogenómica *(transcriptómica)*, toxicoproteómica y metabonómica, etc. que puedan dilucidar nuevas vías y redes mecanísticas. Es decir, mientras la toxicología tradicional y reciente utilizaba argumentos racionales, tratando, por ejemplo, de identificar el gen implicado en las patologías relacionadas con cierto producto, los nuevos planteamientos operan de forma más empírica, buscando los niveles de expresión de miles de genes, algunos de los cuales pudieran estar implicados aunque otros no lo estén y obtener la mayor información posible de carácter toxicodinámico (Boelsterli, 2007).

En definitiva, la Toxicología de nuestros días es fundamentalmente mecanística apoyada en los avances de la Biología Molecular, y la Figura 1.5 refleja la complejidad de la Toxicología actual, con las áreas de conocimiento que la sustentan, y su derivación a unas áreas fundamentales y unas ramas de aplicaciones prácticas. En la Rama de Toxicología General se incluye una faceta de Coordinación, de conformidad con la clasifica-
ción de toxicólogos que se propuso por la OMS (1982) en unos profesionales de nivel I, especializados en cualquiera de las ramas, y otros de nivel II, responsables de la coordinación o dirección de equipos de toxicólogos.

ENSEÑANZA DE LA TOXICOLOGÍA

De todo lo expuesto se deduce claramente que la toxicología, en cualquiera de sus ramas, está sometida a un intenso desarrollo que, normalmente, encuentra el obstáculo de una deficiente implantación en las universidades.

Ya hemos referido cómo Fuhner en Alemania (1956) y Fournier en Francia (1968) se lamentaban de la deficiente programación de los estudios de toxicología en sus respectivos países, como ya lo hiciera, para España, Pedro Mata en el siglo XIX, y nosotros repetidamente en el siglo XX.

La situación de carencia fue denunciada dura-mente en la revista *Archives of Toxicology* por Aldridge y Schlatter (1980), en el trabajo *Training and Education in Toxicology*, que por su interés fue traducido al español y publicado por la Asociación Española de Toxicología. Los autores decían textualmente que el número de cátedras y departamentos de Toxicología en las instituciones académicas de Europa era inadecuado para el desarrollo equilibrado de la educación en este tema, y era urgente crear departamentos que gozasen de un status igual al de las otras disciplinas biomédicas, y reclamaban el reconocimiento de la Toxicología como materia multidisciplinar.

En los últimos años de la década de los 70, la Oficina europea de la Organización Mundial de la Salud (OMS, WHO) promovió la creación de comisiones que estudiase las necesidades que tendría Europa de especialistas en Toxicología hacia el año 2000 y las acciones formativas que deberían desarrollarse para cumplir las expectativas. Las previsiones fueron publicadas por el Programa Internacional de Seguridad Química (IPCS), perteneciente a la OMS, en 1981, con el nombre de *Manpower development for control of chemicals* y *Manpower in toxicology* (1982) en un significativo esfuerzo para aclarar la situación y estimular a los gobiernos a preocuparse por la formación en toxicología. En años posteriores, una comisión de la Unión Europea realizó encuestas en los Estados Miembros para constatar la docencia de toxicología en sus universidades.

Como paliativo, en distintos lugares se comenzaron a organizar cursos para postgraduados. En 1978, la Federación Mundial de Centros Antitóxicos y de Toxicología clínica formó una comisión para organizar cursos internacionales por vía postal. El Departamento de Salud de EE UU instituyó ayudas para programas especiales en numerosas universidades, dirigidos al adiestramiento de toxicólogos, de la misma manera que en Iberoamérica se organizan cursos nacionales e internacionales con idéntico objetivo.

También están proliferando cursos a distancia, a través de Internet, para postgraduados, como los que nosotros organizamos desde la Universidad de Sevilla o desde otras instituciones (http://www.busca-tox.com).

Sin embargo, desde hace muchos años venimos insistiendo en que, lo más importante para el desarrollo y la utilidad de la Toxicología no son los cursos de postgrado, que tienen un objetivo de formación de especialistas y profesores, sino la docencia de asignaturas de Toxicología en el pregrado, y esto no debe limitarse a las carreras clásicas, sino extenderse a todas las de carácter sanitario, de Ciencias de la Salud o Ciencias de la Vida, así como a todas aquellas en que se contemple la fabricación, manipulación y uso de sustancias químicas, como las ingenierías industriales, agronómicas, etc., y en las carreras de carácter alimentario y ambiental, lo que poco a poco se va convirtiendo en realidad.

El primer paso decisivo fue la creación de cátedras de toxicología independientes de otras materias, como Medicina Legal, Farmacología, Análisis químico, etc., para permitir un desarrollo y evolución propios, lo que si bien ocurrió en Francia en 1834, al crearse en la Facultad de Farmacia de París la primera cátedra de toxicología del mundo, ha sido seguido con enorme lentitud en otros lugares.

Tradicionalmente los estudios universitarios de materias toxicológicas han venido realizándose en España en las facultades de Farmacia, Medicina y Veterinaria unidos a otras disciplinas, en relaciones que hoy pueden parecernos extrañas, aunque afortunadamente nuevos planes académicos han mejorado la situación.
En la licenciatura de Farmacia existió una asignatura que se denominó de Análisis Químico de Alimentos, Medicamentos y Venenos, y que después se titulaba de Análisis Químico Aplicado, Bromatología y Toxicología. Hacia 1970 se desglosó tímidamente en algunas universidades una «ampliación» de Toxicología, que en 1997 adquiere carácter troncal, como Toxicología General, junto con otras asignaturas, de carácter obligatorio y/o específico, de Toxicología de los Medicamentos, de los Alimentos o Ambiental.

En las facultades de Medicina hubo una macroasignatura de Medicina Legal, Psiquiatría y Toxicología, de la que se desglosó la Psiquiatría en los años cincuenta, permaneciendo la Toxicología supeditada a la material legal. Afortunadamente, en los nuevos planes de estudio, aunque, lógicamente, persista una Medicina Legal y Toxicología Forense, se incrementa la presencia de la Toxicología en Patología y Prácticas Médicas, enfermedades infecciosas e intoxicaciones, Medicina de Urgencia, Medicina Preventiva y otras materias, pero sin que llegue a consolidarse una Toxicología Clínica.

La licenciatura de Veterinaria tuvo tradicionalmente una Farmacología, Veterinaria Legal y Toxicología, de la que en los años ochenta se desglosó la Farmacología; en los nuevos planes también se contemplan algunas especialidades toxicológicas y ecotoxicológicas.

Pero además, en los programas de la licenciatura de Química aparece la toxicología en varias materias obligatorias y optativas; igualmente hay asignaturas de toxicología en las nuevas licenciaturas de Ciencias Ambientales y de Ciencia y Tecnología de los Alimentos, y aparecen como optativas en los programas de Bioquímica, Biología, etc.

Acreditación y Registro de toxicólogos

Desde 1979, el American Board of Toxicology, organización independiente radicada en Washington DC, expide certificados que acreditan sólida capacitación y continuada actividad profesional en Toxicología; los nombres de estos toxicólogos se mantienen en una lista o Registro durante un periodo de tiempo, generalmente cinco años, al cabo de los cuales hay que demostrar que se sigue ejerciendo la profesión para conseguir mantenerse en el Registro; en Europa, varios países y la asociación EUROTOX han implantado un sistema similar. En España, la Asociación Española de Toxicología gestiona el Registro Nacional de Toxicólogos profesionales, cuyos nombres también son incluidos y publicados en el registro de EUROTOX (véase http://aetox.es).

BIBLIOGRAFÍA

Aldridge WN, Schlatter Ch. Training and education in Toxicology. *Archives of Toxicology*, 1980, 45,249-256.

Repetto M, Vettorazzi G. Complejidad de la toxicología moderna. Revista de Toxicología, 1983; 1, 0.
Repetto M. La formación de toxicólogos clínicos. JANO, 1985; 19-29.
Repetto M. Perspectivas y tendencias de la toxicología hacia el siglo XXI. Rev de Toxicología, 1995; 12: 2/3, 47-55.